Climate Change and the Cryosphere

K. Arthur Endsley

Numerical Terradynamic Simulation Group (NTSG) W.A. Franke College of Forestry and Conservation

Small-Group Discussions

Newtok, Alaska and **Coral Gables, Florida** are two coastal communities in the U.S. that are facing the consequences of rising sea levels. Both communities face a decision to relocate to higher ground.

- In Newtok, where 95% of the population is indigenous Yupik, the mean annual temperature is 31 degrees F and the ground is frozen for much of the year.
- In Coral Gables, 60% of the population is Hispanic/Latino, 53% of households speak Spanish at home, and 1 in 5 residents is older than 65.

What are some of the differences between these communities in how they experience sea-level rise and the factors affecting a decision to move?

What is the Cryosphere?

Is the Cryosphere changing? How?

How do we monitor changes in the Cryosphere?

How do changes in the Cryosphere affect us at lower latitudes?

High northern latitudes are warming at 2-3 times as fast as the rest of the planet.^{1,2}

Figure produced with NOAA data from: http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.CPC/

¹2021 IPCC 6th Assessment Report; ²Zhou et al. (2024, *Nature Geoscience*)

Surface Energy Balance

Surface Energy Balance

Typical albedo values:

■ Fresh snow: 0.8-0.9

Sea ice: 0.5-0.7Trees: 0.1-0.3

■ Soil: 0.2

■ Ocean water: <0.1

Why has Greenland's albedo changed?

Left: Trend in Greenland ice albedo (2000-2011) from satellite observations (2012 NOAA Arctic Report Card)

Ice-Free Areas are Changing Too

Shrub and Woody Plant Growth

Myers-Smith et al. (2019, Ecological Monographs)

Warmer Mean Arctic Temperatures

Negative climate feedback

Positive climate feedback

Warmer Mean Arctic Temperatures

Permafrost

Year-round frozen soil, **about** 25% of the land in the Northern Hemisphere.

Some Arctic soils are thawing for the first time in thousands of vears!

Map: International Permafrost Association

Permafrost-Climate Feedbacks

ESD11-015

Photo: Arthur Endsley (2024)

How do we monitor changes in the Cryosphere?

Global Loss of Land Ice?

Glaciers supply water to 2 billion people world-wide.¹ What's happening to them in a warming world?

¹Millan et al. (2022, *Nature Geoscience*)

Global Loss of Land Ice?

Global Loss of Land Ice?

How is the **equilibrium line altitude (ELA)** changing?

i.e., which is growing: the Accumulation Zone or the Ablation Zone?

Monitoring Changes in Land Ice

Satellite or Airborne Radar Interferometry

Monitoring Changes in Land Ice

Satellite or Airborne Radar Interferometry

Gravitational Anomalies (e.g., GRACE and GRACE-FO)

Field work at the Bering Glacier, June 2012

Returning to the Glacier, August 2012

Glacial melt since 1993: 6,200 gigatons of ice or 17.1 (\pm 4.4) mm of equivalent sea level rise¹

Dyurgerov & Meier (2000, Science)

Adding in Ice Sheet Changes

Adding Greenland, Antarctic ice sheet loss to terrestrial glacier ice loss: **38.1 mm (1.5 inches) of global sea-level rise since 1992!**

Otosaka et al. (2023, Earth System Science Data)

Present Contributions to Sea-Level Rise

- Ice sheets
- Glaciers on land
- Aquifer depletion
- Density changes (e.g., thermal expansion of water)
- Missing anything?

Future Contributions to Sea-Level Rise

Future Contributions to Sea-Level Rise

If ALL the land ice melted...

Ice on Land	Sea level equivalent (m)
Antarctica	57.9
Greenland	7.4
All other ice	0.25

Morligheim et al. (2017, 2019), Farinotti et al. (2019) and Millan et al. (2022)

Smith et al. (2019, Science)

"The Earth is Faster Now"

Newtok, AK voted to move their village *20 years ago* due to ground subsidence.

In Sachs Harbor, the Inuvialuit have described increased weather variability in Spring, Fall.

"We can't predict the weather like we used to."

Photo by Katie Orlinsky; ¹Jolly et al. (2002)

Traditional Ecological Knowledge (TEK)

- Meat and fish going to waste because of over-fermentation.¹
- Warmer spring nights preventing freeze-up necessary for evening hunting.^{1,2}
- New and unfamiliar species (salmon, white-tailed deer).^{2,3}
- Changing phenology: Indigenous reindeer herders have reported larger and taller willow stands.⁴

¹Fox (2002); ²Jolly et al. (2002); ³Bastedo (2007); ⁴Forbes et al. (2010); Photo by James Bastedo

How do changes in the Cryosphere affect society at lower latitudes? And at lower elevations?

Impacts on Water Supplies in Mountain Communities

in summer

Impacts on Water Supplies in Mountain Communities

Barandun et al. (2020, Water Security)

Upper Stratospheric Warming

Upper Stratospheric Warming

NOAA and Climate.gov (2021)

Remember Summer 2021? (And 2024)

Persistent Atmospheric Blocking

Global warming \to Reduces temperature contrast between Arctic and mid-latitudes \to Weakening the jet stream \to Reducing summer air circulation

Regression slope (m²s⁻²/°C)

Relationship between eddy kinetic energy (measure of jet stream disruption) and summer temperatures

Coumou et al. (2015)

Persistent Atmospheric Blocking

Global warming \to Reduces temperature contrast between Arctic and mid-latitudes \to Weakening the jet stream \to Reducing summer air circulation

2010 Russian Heat Dome:

- Wildfires
- 11,000 deaths from heat
- 55,000+ deaths after including smoke-related causes¹
- Grain harvest losses of 30%
- Ban on grain exports

¹USAID, Center for Research on the Epidemiology of Disasters

Regression slope (m²s⁻²/°C)

Relationship between eddy kinetic energy (measure of jet stream disruption) and summer temperatures

Coumou et al. (2015)

Reduced Air Circulation

Photo: ABC News

Winter Haze in China (2013)

PM2.5 concentrations exceeded **766 ug m**⁻³

(Missoula experienced 125+ $ug m^{-3}$ at the peak of 2024's smoke season.)

Arctic Amplification

Extreme cold snaps in fall and winter due to sudden stratrospheric warming events:

- Have doubled in frequency since 1980¹
- Will become much more common in the future²

Texas Ice Storm (2021)

is then the costliest natural disaster in the state's history

¹Cohen et al. (2021); ²Mann et al. (2018)

