
GPHY491/489: Programming for GIS

K. Arthur Endsley
Numerical Terradynamic Simulation Group
W.A. Franke College of Forestry and Conservation

January 16, 2025

Introductions
Hi, My Name is Arthur!

Taught programming at Lawrence Berkeley National Labs,
NASA Langley, the Federal Reserve Board...

Maintaining the NASA Soil Moisture Active Passive
(SMAP) satellite mission’s Level 4 Carbon (L4C) model:
1-km resolution, global coverage, over 500 million pixels!

Leading NASA-funded research into how satellite
microwave measurements can be used to study forest
water stress and fire risk.

GPHY491/489: Course Introduction January 16, 2025 1 / 46

Introductions
Teaching Assistant: Bryan Tutt

GPHY491/489: Course Introduction January 16, 2025 2 / 46

Outline

GIS programming workflows: An example

Some role-playing: How can programming improve GIS tasks?

Thinking like a Computer Scientist

Course overview

GPHY491/489: Course Introduction January 16, 2025 3 / 46

Motivation: Ice Motion Tracking

GPHY491/489: Course Introduction January 16, 2025 5 / 46

Motivation: Ice Motion Tracking

GPHY491/489: Course Introduction January 16, 2025 6 / 46

Motivation: Ice Motion Tracking

GPHY491/489: Course Introduction January 16, 2025 7 / 46

Motivation: Ice Motion Tracking

1 import scipy
2 scipy.signal.filtfilt(1, 2, gps_coords)

GPHY491/489: Course Introduction January 16, 2025 8 / 46

Live-Action Role-Playing: GIS Edition
Pair up! There are two roles: Manager
and Analyst. Take 5 minutes in one role
for Prompt A, then switch roles and
read Prompt B. The Analyst should
describe how they would achieve the
goal using ArcGIS Desktop.

Questions to consider:
How will the data be handled?
What specific tools would you use,
in what order?
How long will it take?
What are the possible sources of
error?

GPHY491/489: Course Introduction January 16, 2025 9 / 46

So: Why Programming?

Humans are terrible at repetitive tasks.

GPHY491/489: Course Introduction January 16, 2025 10 / 46

So: Why Programming?

Humans are terrible at repetitive tasks.

A computer program or script is a documentation of your workflow.

GPHY491/489: Course Introduction January 16, 2025 11 / 46

So: Why Programming?

Humans are terrible at repetitive tasks.

A computer program or script is a documentation of your workflow.

Computer code is transferable and re-useable; it can be used to
verify that your analysis was done correctly and to obtain the
same result.

GPHY491/489: Course Introduction January 16, 2025 12 / 46

So: Why Programming?

Humans are terrible at repetitive tasks.

A computer program or script is a documentation of your workflow.

Computer code is transferable and re-useable; it can be used to
verify that your analysis was done correctly and to obtain the
same result.

$$$: U.S. average annual salary (2023):1

“GIS Analyst:” $72,530
“GIS Programmer:” $86,743

1ZipRecruiter.com

GPHY491/489: Course Introduction January 16, 2025 13 / 46

Thinking Like a Computer Scientist
Computational thinking is a problem-solving activity.1

1Cynthia Selby & John Woolard (2013)

GPHY491/489: Course Introduction January 16, 2025 14 / 46

Thinking Like a Computer Scientist
Computational thinking is a problem-solving activity.

Abstraction: Representing only what is essential.

GPHY491/489: Course Introduction January 16, 2025 15 / 46

Thinking Like a Computer Scientist
Computational thinking is a problem-solving activity.

Abstraction: Representing only what is essential.

Decomposition: Decomposing a complex problem or system into manageable parts.

GPHY491/489: Course Introduction January 16, 2025 16 / 46

Thinking Like a Computer Scientist
Computational thinking is a problem-solving activity.

Abstraction: Representing only what is essential.

Decomposition: Decomposing a complex problem or system into manageable parts.

Algorithms: Logical and ordered instructions for carrying out a task.

Order and precedence; what is required before the next thing?
Design the fewest number of steps; remove unnecessary steps

GPHY491/489: Course Introduction January 16, 2025 17 / 46

Thinking Like a Computer Scientist
Computational thinking is a problem-solving activity.

Abstraction: Representing only what is essential.

Decomposition: Decomposing a complex problem or system into manageable parts.

Algorithms: Logical and ordered instructions for carrying out a task.

Debugging and Continuous Improvement

Detect and identify errors
Start with an initial, acceptable solution
Then iteratively refine the solution, as needed

Valerie Shute et al. (2017)

GPHY491/489: Course Introduction January 16, 2025 18 / 46

Thinking Like a Computer Scientist
Computational thinking is a problem-solving activity.

Abstraction: Representing only what is essential.

Decomposition: Decomposing a complex problem or system into manageable parts.

Algorithms: Logical and ordered instructions for carrying out a task.

Debugging and Continuous Improvement

Collaboration, Reflection, and Feedback

Valerie Shute et al. (2017)

GPHY491/489: Course Introduction January 16, 2025 19 / 46

Thinking Like a Computer Scientist (2)
Don’t be afraid to experiment!

GPHY491/489: Course Introduction January 16, 2025 20 / 46

Thinking Like a Computer Scientist (2)
Don’t be afraid to experiment!

You should be asking yourself:

pyplot.scatter(data)

array.min()

“Is there a pyplot.histogram() or
pyplot.lineplot() function?”

“Will array.max() calculate the
maximum?”

GPHY491/489: Course Introduction January 16, 2025 21 / 46

Thinking Like a Computer Scientist (3)

Instructions

Tasks that you
want completed

Computer
Program

Converts instructions
into “machine code”

CPU

Numbers in memory
are changed

Program doesn’t understand

(CPU: Central Processing Unit)

GPHY491/489: Course Introduction January 16, 2025 22 / 46

Thinking Like a Computer Scientist (4)

GPHY491/489: Course Introduction January 16, 2025 23 / 46

Assembly Language
DOSSEG
.MODEL TINY
.DATA
TXT DB "Hello, world!$"
.CODE
START:

MOV ax, @DATA
MOV ds, ax
MOV ah, 09h
MOV dx, OFFSET TXT
INT 21h
MOV AX, 4C00h
INT 21h

END START

GPHY491/489: Course Introduction January 16, 2025 24 / 46

Assembly Language
DOSSEG
.MODEL TINY
.DATA
TXT DB "Hello, world!$"
.CODE
START:

MOV ax, @DATA
MOV ds, ax
MOV ah, 09h
MOV dx, OFFSET TXT
INT 21h
MOV AX, 4C00h
INT 21h

END START

2nd-Generation Language (C)
include <stdlib.h>
include <stdio.h>

int main(void)
{

printf("Hello, world!\n");
return EXIT_SUCCESS;

}

GPHY491/489: Course Introduction January 16, 2025 25 / 46

Assembly Language
DOSSEG
.MODEL TINY
.DATA
TXT DB "Hello, world!$"
.CODE
START:

MOV ax, @DATA
MOV ds, ax
MOV ah, 09h
MOV dx, OFFSET TXT
INT 21h
MOV AX, 4C00h
INT 21h

END START

2nd-Generation Language (C)
include <stdlib.h>
include <stdio.h>

int main(void)
{

printf("Hello, world!\n");
return EXIT_SUCCESS;

}

3rd-Generation Language
(Python)

print("Hello, world!\n")

GPHY491/489: Course Introduction January 16, 2025 26 / 46

Thinking Like a Computer Scientist (4)
Compiled Languages

e.g., C, Java, Fortran

Code is compiled into machine code
(binary) before the program is executed

Interpreted Languages
e.g., Python, R

Code is translated into machine code
automatically when the program is run

GPHY491/489: Course Introduction January 16, 2025 27 / 46

Thinking Like a Computer Scientist (4)
Compiled Languages

e.g., C, Java, Fortran

Code is compiled into machine code
(binary) before the program is executed
Programmer must specify data types,
how to allocate storage (memory), ...

Interpreted Languages
e.g., Python, R

Code is translated into machine code
automatically when the program is run
Interpreter figures out what data types
and memory are required

GPHY491/489: Course Introduction January 16, 2025 28 / 46

Thinking Like a Computer Scientist (4)
Compiled Languages

e.g., C, Java, Fortran

Code is compiled into machine code
(binary) before the program is executed
Programmer must specify data types,
how to allocate storage (memory), ...
Compiled programs can be very fast:
Programs executed as binary

Interpreted Languages
e.g., Python, R

Code is translated into machine code
automatically when the program is run
Interpreter figures out what data types
and memory are required
Never as fast: Programs are executed
as low-level instructions

GPHY491/489: Course Introduction January 16, 2025 29 / 46

Thinking Like a Computer Scientist (4)
Compiled Languages

e.g., C, Java, Fortran

Code is compiled into machine code
(binary) before the program is executed
Programmer must specify data types,
how to allocate storage (memory), ...
Compiled programs can be very fast:
Programs executed as binary
Can take a long time to write and
debug a program

Interpreted Languages
e.g., Python, R

Code is translated into machine code
automatically when the program is run
Interpreter figures out what data types
and memory are required
Never as fast: Programs are executed
as low-level instructions
Much easier to learn; programs can be
written quickly

GPHY491/489: Course Introduction January 16, 2025 30 / 46

Who is a Computer Programmer?

GPHY491/489: Course Introduction January 16, 2025 31 / 46

Who is a Computer Programmer?

Hedy Lamarr (1914-2000)
Invented frequency-hopping technology, initially for
radio-guided torpedoes
Same technology later used in cellular phones
Self-taught! Collaborated with friend George
Antheil to use a player-piano reel for timing the
changes in frequency

GPHY491/489: Course Introduction January 16, 2025 32 / 46

Who is a Computer Programmer? (2)
The most famous faces in the tech industry tend to look very similar. . .
and they’re making the world less fair and less free.

GPHY491/489: Course Introduction January 16, 2025 33 / 46

Who is a Computer Programmer? (2)
The most famous faces in the tech industry tend to look very similar. . .
and they’re making the world less fair and less free.

GPHY491/489: Course Introduction January 16, 2025 34 / 46

Who is a Computer Programmer? (2)
The most famous faces in the tech industry tend to look very similar. . .
and they’re making the world less fair and less free.

A 2017 memo by Google employee James Damore claimed that participation and success
in computer science is biologically determined.

GPHY491/489: Course Introduction January 16, 2025 35 / 46

Who is a Computer Programmer? (2)
The most famous faces in the tech industry tend to look very similar. . .
and they’re making the world less fair and less free.

A 2017 memo by Google employee James Damore claimed that participation and success
in computer science is biologically determined.

“As the initial pool of problem solvers
becomes large, the best-performing
[programmers] necessarily become
similar...Their relatively greater ability is more
than offset by their lack of problem-solving
diversity.”

GPHY491/489: Course Introduction January 16, 2025 36 / 46

Computer game advertising
begins to portray computers
as gender-specific tools

Labor pool’s
lost talent

This is a challenging course, but you already have
all the tools you need to be successful.

GPHY491/489: Course Introduction January 16, 2025 39 / 46

Course Overview

GPHY491/489: Course Introduction January 16, 2025 40 / 46

How You Will Learn

We’ll use two learning strategies in this course:

1 Hands-on-Keyboards with real data
2 Peer Programming with real data

GPHY491/489: Course Introduction January 16, 2025 41 / 46

How You Will Learn

We’ll use two learning strategies in this course:

1 Hands-on-Keyboards with real data
2 Peer Programming with real data

It’s not Chemistry, it’s Carpentry!

GPHY491/489: Course Introduction January 16, 2025 42 / 46

What You Will Learn

Python programming (currently the most popular
language in the world1)

R for data analysis
1https://www.tiobe.com/tiobe-index/

GPHY491/489: Course Introduction January 16, 2025 43 / 46

https://www.tiobe.com/tiobe-index/

What You Will Learn (2)
How to choose the best language for the job:

Python
Higher performance
Raster and array data processing
Batch processing of multiple files
Machine learning
Plotting large raster datasets
Process-based or multi-criteria
modeling (e.g., habitat suitability)
Cellular automata/ Agent-based models
Creating your own algorithm

R
Vector data analysis
Working with an Attribute Table
Plotting vector data and
coarse-resolution raster data
Geostatistics
Spatial point pattern analysis
Spatial autoregressive models
Using algorithms written by others

GPHY491/489: Course Introduction January 16, 2025 44 / 46

How You Will Be Evaluated

Lab Exercises: 60%

For graduate students or for undergraduate extra credit:

Midterm Project: 20%

Final Project: 20%

GPHY491/489: Course Introduction January 16, 2025 45 / 46

For Next Time
Make sure to sign up for both GPHY 491 and GPHY 489 (Lab).

Lab meets on Wednesdays at 9:00a in Stone Hall 106!

Please listen and read!

NPR Planet Money Podcast: “When Women Stopped Coding”

Dynamic Ecology blog post: “Stereotype threat: A summary of the
problem”

GPHY491/489: Course Introduction January 16, 2025 46 / 46

