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1 - INTRODUCTION 
 
This document provides information relating to a probabilistic Northern Hemisphere 
freeze/thaw (FT) data record derived using a deep learning model (U-Net) architecture 
informed by satellite multi-frequency microwave brightness temperature retrievals from 
the NASA SMAP (Soil Moisture Active Passive) and JAXA AMSR2 (Advanced 
Microwave Scanning Radiometer 2) radiometers, and trained using daily soil 
temperature observations from Northern Hemisphere weather stations and global 
reanalysis data (ERA-5). Unlike other available FT data records that provide only a 
binary (0,1) classification of frozen or non-frozen conditions, this product includes both 
binary FT and continuous variable estimates of the probability of thawed conditions. 
This product is designed to complement other established binary FT data records, 
including the NASA FT Earth System Data Record (Kim et al. 2021) and SMAP Level 3 
FT operational products (Xu et al. 2020), by providing a probabilistic FT variable with 
enhanced accuracy and sensitivity to near-surface (≤5 cm depth) soil FT conditions.  
 
The biophysical importance of the FT retrieval from satellite microwave remote sensing 
is well established, providing an effective proxy of the timing, extent and duration of 
frozen conditions in the landscape (McDonald and Kimball 2006). Over half (~66 million 
km2) of the global land area experiences seasonal FT processes profoundly affecting 
surface meteorology and hydrologic activity, vegetation productivity and ecological trace 
gas dynamics (Kim et al. 2017, Parazoo et al. 2018). Microwave sensors are uniquely 
capable of detecting and monitoring FT status owing to their strong sensitivity to 
changes in the relative abundance of liquid water as the landscape transitions between 

https://paperpile.com/c/ujd1Uj/Aoki
https://paperpile.com/c/ujd1Uj/lFoQ
https://paperpile.com/c/ujd1Uj/Bgmx
https://paperpile.com/c/ujd1Uj/cVuH
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predominantly frozen and thawed states. The lower frequency (~ ≤ Ku-band) 
measurements available from many operational polar-orbiting satellites are also 
insensitive to solar illumination and atmospheric contamination, enabling consistent, 
near-daily observations day-or-night and under nearly all-weather conditions. However, 
different microwave frequencies have varying sampling footprints and FT sensitivities to 
different landscape features, including vegetation, snow, and soil conditions. Low 
frequency (L-band) measurements have greater characteristic soil sensitivity (Entekhabi 
et al. 2010), while the addition of complimentary higher frequency measurements can 
further enhance soil FT detection by increasing the information content of the retrievals 
and reducing potential noise contributed from other landscape features (Bateni et al. 
2013, Du et al. 2017).    
 
A detailed description of the underlying methods and product validation is provided 
elsewhere (Donahue et al. 2023), while a summary of the soil FT data record and 
product format is provided below. Unlike other satellite microwave FT environmental 
data records that commonly provide a bulk landscape level FT retrieval, this product 
quantifies soil FT conditions in the near-surface (0-5cm depth) soil layer. The resulting 
data product has favorable accuracy and consistent performance suitable for scientific 
research, and the soil FT parameter is expected to have greater utility in defining frozen 
soil constraints on soil moisture availability, permafrost stability, soil organic matter 
decomposition and soil respiration processes contributing to greenhouse gas emissions. 
Future product releases may include refinements to the data format and an extended 
data record enabled from ongoing SMAP and AMSR operations. 
 

2 - Data Description 
This daily data record includes both binary and probabilistic FT variables produced 
using the same deep learning framework and geospatial inputs. The model inputs 
include: rSIR spatially enhanced vertically and horizontally polarized brightness 
temperatures (TBs) from SMAP (1.4 GHz) (Brodzik et al. 2022) and overlapping AMSR2 
(18.7 and 36.5 GHz) TB retrievals (Maeda et al. 2016) mapped to a consistent Northern 
Hemisphere polar grid. The TB retrievals include both ascending (6am SMAP; 1:30pm 
AMSR2) and descending (6am SMAP; 1:30am AMSR2) local orbital overpass sampling 
times. Additional model inputs include the DEM derived mean elevation and latitude of 
each 9-km resolution grid cell. The product contains daily local morning (6am) and 
evening (6pm) FT predictions spanning the data years from 2016 through 2020. The 
beginning of the data record is defined by the first complete calendar year of SMAP 
observations. All model inputs and outputs are formatted to the Northern Hemisphere 
Polar EASE-Grid 2 projection (Brodzik et al. 2014) consistent with the Polar Enhanced 
Resolution (PER) FT-ESDR (Kim et al. 2021). The 9-km product grid resolution is also 

https://paperpile.com/c/ujd1Uj/14dR
https://paperpile.com/c/ujd1Uj/7pQD
https://paperpile.com/c/ujd1Uj/Aoki+lFoQ
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consistent with the resolution of the rSIR TB inputs and the SMAP enhanced L3 
radiometer Northern Hemisphere FT product (Xu et al. 2020).  
 
This product is intended to provide a reliable soil FT classification for all non-
permanently frozen lands in the Northern Hemisphere, along with enhanced spatial 
information, accuracy, and soil FT sensitivity gained from the use of complimentary 
multi-frequency TB inputs. The combined use of SMAP L-band (1.4 GHz) TB 
observations and AMSR2 higher frequency TB retrievals as key inputs to a U-Net deep 
learning model, trained using soil FT observations from both model data reanalysis and 
in situ soil temperature network measurements, provides enhanced product sensitivity 
to FT conditions in the near-surface soil layer (Donahue et al. 2023). The resulting 
product includes a continuous variable estimate of the probability of thawed conditions, 
which may have enhanced information and utility for some applications (Farhadi et al. 
2015, Zwieback et al. 2012). 
 
An example of the product outputs showing the probability of frozen conditions for four 
selected days in 2016 is shown in Figure 1. The U-Net model outputs and associated 
product includes a daily binary FT classification (0 for frozen, 1 for thawed) for all land 
areas on a 9km polar grid, along with a continuous FT classification ranging from low (0) 
to high (1) probability of thawed conditions on the same grid. Masked grid cells (e.g. 
black areas in Fig. 1) include cells dominated by open water, permanent Ice cover, or 
permanently frozen land as defined by a land-ice-ocean mask (Friedl et al. 2010). The 
model is trained from independent soil temperature observations to recognize and 
classify FT transitions across a prescribed 0ºC thermal boundary between 
predominantly frozen and thawed ground conditions. Here, the model inputs are 
sensitive to the large characteristic TB response to changes in near-surface liquid water 
abundance and associated dielectric properties that occur during landscape FT 
transitions. The combined use of different frequencies and polarizations provide 
additional information to better distinguish soil FT transitions from other landscape FT 
contributions from lower atmosphere, snow and vegetation components of the sensor 
footprint. The product includes different daily fields for local morning and afternoon FT 
conditions, which are derived from similarly trained but separate models using 
ascending and descending overpass TB inputs.  

https://paperpile.com/c/ujd1Uj/lFoQ
https://paperpile.com/c/ujd1Uj/ECBS+iQpb
https://paperpile.com/c/ujd1Uj/ECBS+iQpb
https://paperpile.com/c/ujd1Uj/W3p7
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Figure 1: Example product fields showing the probability of thawed conditions for four 
selected days over the 2016 seasonal cycle. The probability of thawed conditions 
ranges from low (0) to high (1) and is lower at higher latitudes and upper elevations 
during early spring (Mar) and late fall (Oct) in the Northern Hemisphere; in contrast, the 
probability of thawed conditions is much greater during mid-summer (Aug).  
 

3 - Accuracy and performance 
The product was validated using a combination of in-situ soil (≤5cm depth) temperature 
measurements from Northern Hemisphere weather stations and ERA5 Reanalysis 
surface layer (Layer 1) soil temperature data. The in-situ soil temperature 
measurements were used for the primary validation, but were supplemented with ERA5 
temperatures to compensate for the sparse weather station network (Figure 3). The 
daily temperature records were converted to FT prior to the validation assessment using 
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a 0ºC threshold to distinguish between frozen and non-frozen conditions. The morning 
and afternoon FT product fields were then compared against the respective 6am and 
6pm readings of the temperature observations. These times were selected to represent 
diurnal conditions more likely to be uniform in soil temperature and soil dielectric 
properties, while also matching the SMAP orbital overpass times. 
 
A summary of the product accuracy for a selected data year (2016) is shown in Table 1. 
The overall product accuracy for the morning (6am) FT data is 93.1% when compared 
to ERA5 and 92.5% compared to the in situ soil temperature measurements. The 
relative accuracy varies seasonally, ranging from 98.7% in the summer months to 
89.6% in the winter months. The product also shows variable performance in different 
regions, as shown relative to ERA5 (Figure 2) and in-situ weather station (Figure 3) soil 
temperature records. The relative product accuracy is generally lower over complex 
mountain terrain such as the Rocky Mountains and Himalayas due to the scale 
mismatch between the coarse satellite TB measurement footprint relative to the larger 
FT heterogeneity driven by the complex topography. The product accuracy is also lower 
over the Tibetan Plateau, where the complex terrain and arid landscape may reduce the 
effective microwave FT signal. Despite the above limitations, the product performance is 
similar or better than the accuracy reported from other available FT products from 
SMAP and the ESDR baseline (Kim et al. 2017, Derksen et al. 2017, Kim et al. 2019).   

https://paperpile.com/c/ujd1Uj/sN4X+jZXW+a0qV
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Figure 2: Mean percent accuracy of the product in relation to ERA5 temperature based 
FT data for selected data year 2016. Black areas denote masked regions outside of the 
product domain. 
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Figure 3: Mean percent accuracy of the product in relation to soil temperature 
measurement based FT data from the regional weather station network for selected 
data year 2016. Approximately 700 stations were used in the validation assessment. 
Black areas denote masked regions outside of the product domain.  
 
 

4 - Ancillary Data used for Model Inputs and Training 

The SMAP TB record used to derive the FT product was obtained from the SMAP rSIR 
enhanced grid product (Brodzik et al. 2021), which is provided in a 9km polar EASE-grid 
2 projection consistent with the FT product format and with spatially enhanced gridding 
and favorable performance relative to the SMAP native (~40-km) TB sampling footprint 
(Long et al. 2023). Land recordings occur at approximately two-day intervals for land 
areas poleward of 45ºN, with consistent 6pm/am local ascending/descending orbital 

https://paperpile.com/c/ujd1Uj/nAed
https://paperpile.com/c/ujd1Uj/14dR
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overpass sampling times for the vertical and horizontal polarization TB retrievals. The 
SMAP rSIR period of record used for processing begins March 31, 2015 and extended 
to May 1, 2021 at the time of this study. To construct complete daily records for each 
morning and afternoon TB time series, missing TB data between satellite swathes were 
gap-filled using a weighted average between the two most recent adjacent retrievals 
within up to a five-day moving window, as:  

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ (1 − 𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝐷𝐷𝑛𝑛𝑝𝑝𝑛𝑛𝑛𝑛

) + 𝑇𝑇𝑚𝑚𝑝𝑝𝑛𝑛𝑛𝑛 ∗ (1 − 𝐷𝐷𝑛𝑛𝑝𝑝𝑛𝑛𝑛𝑛
𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝐷𝐷𝑛𝑛𝑝𝑝𝑛𝑛𝑛𝑛

) (1) 

 

In the above equation, 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the missing data being filled at a given location and 
time step, 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the most recent valid data before a missing data value in the time 
series; 𝑇𝑇𝑚𝑚𝑝𝑝𝑛𝑛𝑛𝑛 is the most recent data after the missing data value,  𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the number of 
days between 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, and 𝐷𝐷𝑚𝑚𝑝𝑝𝑛𝑛𝑛𝑛 is the number of days between 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 
𝑇𝑇𝑚𝑚𝑝𝑝𝑛𝑛𝑛𝑛. If no TB data is present in the five-day window then the pixel is masked out to 
prevent gaps from being filled with data too temporally distant.  

The AMSR2 TB data was obtained for the 18.7 GHz and 36.5 GHz channels and vertical 
and horizontal polarizations overlapping with the same period of record as SMAP. The 
AMSR2 data were obtained in a consistent 10 km resolution global EASE-grid format 
from the AMSR2 GCOM-W Level3 product available through the JAXA G-Portal. The 
AMSR2 TB retrievals include twice-daily coverage at higher latitudes owing to a 
relatively wide sensor swath and consistent 1:30am/pm local sampling from the orbital 
swath retrievals. Missing data was gap-filled in the same manner as the SMAP data 
(above). The AMSR2 data was then reprojected to the 9km polar EASE-grid 2 format 
using the LinearNDInterpolator from the scipy package. A linear interpolation method 
was chosen to provide a smooth reprojection of the data that considers all nearby cells 
when calculating the values for the grid. Other ancillary and temporally static model 
inputs included the latitude of each grid cell and a global digital elevation model 
(Danielson and Gesch 2011) aggregated from the 1-km native resolution to the 9-km 
polar EASE-grid 2.0 projection. A global land cover map (Friedl et al. 2010) was used to 
identify and mask grid cells dominated by large water bodies, permanent ice and snow, 
and other non-soil areas from the model domain. 

In-situ daily soil temperature measurements from ~800 northern hemisphere weather 
stations were used for model training. The soil temperature records were obtained from 
available Northern Hemisphere stations, including Water and Climate Information 
System (USDA NRCS 2017), International Soil Moisture Network (Dorigo et al. 2021), 
Global Terrestrial Network for Permafrost (GTN-P), and GLOBE networks. The 
distribution of stations for the selected year 2016 is shown in Figure 4. For each station 

https://paperpile.com/c/ujd1Uj/2h5J
https://paperpile.com/c/MHs1Da/LORiC
https://paperpile.com/c/ujd1Uj/L6e2
https://paperpile.com/c/ujd1Uj/l33h+Lg51+MYU2+c2iH+PdVz+UvAU+9MVn+i1ib+WqAg+EbxI+kZO6+Lf7p+dP8N+RAhu
https://paperpile.com/c/ujd1Uj/49jJ
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location, we only used the shallowest soil temperature readings (within 5 cm depth) with 
local measurements obtained as close as possible to the 6am and 6pm SMAP sampling 
times. The location of each station measurement was assigned to the nearest grid cell 
in the 9km polar EASE-grid. If multiple stations were assigned to the same grid cell then 
the associated temperatures were averaged to produce the bulk value of the cell at 
each time step. The morning and afternoon temperature measurements were then 
classified into FT categories using a 0ºC FT threshold.  

 

 
Figure 4: Map of weather station locations with in situ soil temperature measurements 
for the year 2016. Approximately 800 stations were used in the analysis. 

The station temperature measurements reflect actual ground conditions useful for 
model validation, but the stations lack consistent sampling and are sparsely located. 
The actual number of station measurements also varies over time or may not be 
representative of the coarser model and satellite footprints, which can introduce 
uncertainty.  To compensate for the limitations of the sparse station measurement 
network we also included daily surface layer temperatures from ECMWF ERA5 global 
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reanalysis data. ERA5 is a state-of-the-art model and data reanalysis product produced 
in a global 30 km resolution and hourly time step (Hersbach et al. 2020). For this study 
we used the ERA5 daily 6am and 6pm surface temperature (Layer 1) readings. The 
ERA5 temperature data was reprojected to the 9 km polar EASE-grid 2 projection using 
the same method as the AMSR2 data. ERA5 temperatures were also converted to FT 
values using the same procedure as was used for the in situ temperature processing. 
Because ERA5 is still a model output instead of a direct measurement, we put more 
weight on the station temperature measurements for the model training and validation, 
although the station measurements also have limitations as noted above. 
 
 

5 – U-Net Architecture  
The deep learning model U-Net architecture used to derive the soil FT product employs 
convolutional neural network learning with 4 downscaling and 4 upscaling layers and an 
initial filter bank size of 32 channels (Figure 5). The U-Net architecture is effective for 
satellite image segmentation (Ulmas and Liiv 2020, McGlinchy et al. 2019) including 
delineating FT patterns from satellite multi-frequency microwave brightness 
temperatures (Donahue et al. 2023). U-Net works by first running the geospatial inputs 
through multiple steps of convolutional blocks followed by max pool downsampling 
operations. The model dynamic inputs include multi-band (1.4, 18.7, 36.5 GHz) V and H 
polarized brightness temperature daily image arrays from SMAP and AMSR2. The U-
Net downsampling convolutions condense the amount of spatial information while 
enhancing feature information. The process is then reversed with transposed 
convolution upsampling operations followed by convolutional blocks to take the 
condensed feature information and use it to construct the high resolution segmented 
output in the form of FT patterns. After each upsampling process, the corresponding 
downsampling information is concatenated through a skip connection to reintroduce the 
original spatial information to the data. Each convolutional block contains two 
sequences of a 3x3 convolution followed by a 2d batch normalization and a leaky ReLU 
activation function. The primary difference in our model to the standard U-Net is the 
inclusion of spatial dropout layers at the end of each convolutional block with a dropout 
rate of 20%. Dropout is used alongside a strong L2 weight normalization of 1e-3 to 
prevent over saturation of model weights. This is a particular concern due to the sparse 
station temperature data used for model training, which could lead to overfitting in pixels 
with station observations and cause areas of differing predictions to surrounding grid 
cells. 
 

https://paperpile.com/c/ujd1Uj/FRcF
https://paperpile.com/c/ujd1Uj/Q59u+h347
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Figure 5: U-Net model diagram. Dark green polygons represent convolutional blocks, 
blue arrows represent downsample operations, red arrows represent upsample 
operations, and green arrows represent concatenation operations. 

Model training and verification were done using regional weather station and ERA5 
based daily soil FT observations from the years 2017, 2018, and 2019; whereas, model 
validation was done against independent observations from years 2016 and 2020. After 
each epoch the model was verified against observational data from a selection of model 
training years, and the model with the highest performance score was saved as the final 
model.  

Both Binary Cross Entropy (BCE) and local-variational cost functions (Ruby et al. 2020) 
were used to maximize the performance of the model FT predictions against the 
observational FT reference data used for model training. BCE is a standard for binary 
classification problems such as FT predictions. It takes the model’s predicted 
probabilities for thawed (or frozen) conditions, compares them to the FT reference 
defined from the observation training data, and then penalizes the neural network based 
on the distance between the model predicted and expected values. This procedure 
pushes the model predictions to be closer to 0 (Frozen) or 1 (Thawed) when there is 
greater confidence in the prediction and closer to 0.5 when the FT status is uncertain. 
Therefore, in addition to the discrete binary (0 or 1) FT classification, the resulting model 
provides a continuous variable estimate, ranging between 0 and 1, of the probability of 
frozen or thawed conditions. Scoring was done using the Matthews Correlation 
Coefficient (MCC). MCC accounts for true and false positives and negatives when 
evaluating the model outputs and works even if there is a large class imbalance. The 
MCC can be calculated using the formula: 
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𝑀𝑀𝑀𝑀𝑀𝑀 =  𝑇𝑇𝑇𝑇 𝑛𝑛 𝑇𝑇𝑇𝑇 − 𝐹𝐹𝑇𝑇𝑛𝑛𝐹𝐹𝑇𝑇
�(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)

, (2) 

where TP is the number of true positives, TN is the number of true negatives, FP is the 
number of false positives, and FN is the number of false negatives. 

 
 

6 - Data Format 
The data are provided in individual multi-layer GeoTIFF files for each daily granule in 
the product time series; where each daily file includes both probabilistic (band 1) and 
binary (band 2) FT granules. To reduce file size, the product data values are stored as 
shorts that must be divided by 10,000 to convert back to the original floating point data. 
This provides a roughly 50% reduction in file size when stored using this method. Once 
converted back to the original floating point data the data values are defined as follows 
(Table 1). Separate data files are included for morning (AM) and afternoon (PM) 
conditions as defined by the satellite overpasses and depicted in the file names. 
 
Table 1. FT variable definitions. 

Classification  value 

Frozen (binary) 0 

Thawed (binary) 1 

Thawed probability (low [0] to high [1]) Range: 0-1 

Water dominated pixel -1 

Ice dominated pixel -2 

Missing data -3 
 
Each daily file is projected in the same Northern-Hemisphere Polar EASE-Grid 2 
projection format with 9km resolution gridding and 2000x2000 pixels over the domain. 
The geographical range of the product encompasses Northern Hemisphere land areas 
(excluding open water and permanent ice dominant grid cells) within -180° to 180° 
longitude and 0° to 90° latitude. 
 

7 - Data Organization 
The data are stored in a hierarchical file structure by year of record from 2016 through 
2020. Each daily file is saved using the naming format: NH_PROBABILISTIC_[AM or 
PM]_FT_[year]_day[3 digit day of year].tif and ranging from January first (DOY 001) to 
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December 31st (DOY 365). The uncompressed individual file sizes are 15.27 MB, while 
the total multi-year data record is 55.89GB. The entire archive is also available as a 
compressed zip file (~2.46GB) for more efficient download and storage. 
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