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[1] Regional evapotranspiration (ET), including water loss from plant transpiration
and soil evaporation, is essential to understanding interactions between land-atmosphere
surface energy and water balances. Vapor pressure deficit (VPD) and surface air
temperature are key variables for stomatal conductance and ET estimation. We developed
an algorithm to estimate ET using the Penman-Monteith approach driven by Moderate
Resolution Imaging Spectroradiometer (MODIS)-derived vegetation data and daily
surface meteorological inputs including incoming solar radiation, air temperature,
and VPD. The model was applied using alternate daily meteorological inputs, including
(1) site level weather station observations, (2) VPD and air temperature derived from the
Advanced Microwave Scanning Radiometer (AMSR-E) on the EOS Aqua satellite, and
(3) Global Modeling and Assimilation Office (GMAO) reanalysis meteorology-based
surface air temperature, humidity, and solar radiation data. Model performance was
assessed across a North American latitudinal transect of six eddy covariance flux towers
representing northern temperate grassland, boreal forest, and tundra biomes. Model
results derived from the three meteorology data sets agree well with observed tower fluxes
(r > 0.7; P < 0.003; root mean square error of latent heat flux <30 W m�2) and capture
spatial patterns and seasonal variability in ET. The MODIS-AMSR-E–derived ET
results also show similar accuracy to ET results derived from GMAO, while ET estimation
error was generally more a function of algorithm parameterization than differences in
meteorology drivers. Our results indicate significant potential for regional mapping
and monitoring daily land surface ET using synergistic information from satellite optical
IR and microwave remote sensing.
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1. Introduction

[2] The terrestrial water cycle is of critical importance to
a wide array of Earth system processes. It plays a central
role in climate and meteorology, plant community dynam-
ics, carbon and nutrient biogeochemistry [Vörösmarty et al.,
1998]. Evapotranspiration (ET) is an important component
of the terrestrial water cycle. At the global scale it represents
more than 60% of precipitation inputs [Korzoun et al.,
1978; L’vovich and White, 1990] and thereby conveys an
important constraint on water availability at the land sur-
face. Over a relatively long time period (i.e., a season or a
year), the available water for humans and ecosystems in a
given region can be approximated by the difference between
accumulated precipitation and ET [Donohue et al., 2007].
With increasing human population and rapid climate
change, fresh water availability on land has become critically

important both for the environment and society. Through
links between stomatal conductance, carbon exchange, and
water use efficiency in plant canopies [e.g., Hari et al.,
1986; Raich et al., 1991; Woodward and Smith, 1994;
Sellers et al., 1996; Farquhar et al., 2002], ET serves as a
regulator of key ecosystem processes. This, in turn, con-
trols the large areal distribution of plant communities and
vegetation net primary production [e.g., Prentice et al.,
1992; Neilson, 1995; Woodward et al., 1995; Marsden et
al., 1996; Dang et al., 1997; Oren et al., 1999; Misson et
al., 2004].
[3] Boreal forest and Arctic tundra in the pan-Arctic

basin and Alaska cover approximately 25 million km2 of
the northern high latitudes (>50�N) and 30% of the com-
bined North American and Eurasian land mass [Kimball et
al., 2006]. The ecosystems in this pan-Arctic domain are
important contributors to the net balance of water, energy
and carbon exchange between the atmosphere and the
biosphere [McGuire et al., 2008].
[4] A large number of physical factors are involved in

soil evaporation and plant transpiration processes, including
microclimate, plant biophysics and landscape heterogeneity,
making accurate assessment of ET a challenge [Gash, 1987;
Friedl, 1996; Maddock et al., 1998; Janowiak et al., 1998;
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Vörösmarty et al., 1998; McVicar et al., 2007]. Remotely
sensed data, especially those from polar-orbiting satellites,
provide temporally and spatially continuous information at
high latitudes over vegetated surfaces useful for regional
measurement and monitoring of surface biophysical varia-
bles affecting ET, including albedo, biome type and leaf
area index (LAI) [Los et al., 2000]. The Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) onboard NASA’s
Terra and Aqua satellites, provide unprecedented informa-
tion regarding vegetation and surface energy [Justice et al.,
2002], which can be used for regional- and global-scale ET
estimation in near real time. Mu et al. [2007b] modified a
remote sensing ET algorithm (RS-ET) proposed by Cleugh
et al. [2007] that calculates ET using the Penman-Monteith
(P-M) equation with daily meteorological inputs and sensed
leaf area index data from MODIS to estimate the surface
conductance of the P-M equation. The RS-ET algorithm
employs reanalysis surface meteorological data from
NASA’s Global Modeling and Assimilation Office (GMAO,
v. 4.0.0) for regional estimation and mapping of ET glob-
ally. However, reanalysis meteorological products have
been found to exhibit significant bias in high-latitude
locations due to sparse meteorological observations and
complex land surface feedback processes [Zhao et al.,
2006; Zhang et al., 2007]. Error in driving meteorology
can represent a significant proportion of overall error in
high-level remote sensing products [Heinsch et al., 2006].
[5] Previous satellite-based surface energy balance mod-

els (SEBS) [Bastiaanssen et al., 1998a, 1998b; Su, 2002;
Kalma and Jupp, 1990] have employed thermal IR–based
land surface temperature (LST) for regional ET monitoring.
Thermal IR–based LST data are available only for clear-sky
conditions and Surface Energy Balance (SEB) models that
use LST to estimate ET are highly sensitive to error in LST
[Cleugh et al., 2007]. The RS-ET model [Mu et al., 2007b]
uses GMAO daily surface meteorology with MODIS land
cover, albedo, LAI, and Enhanced Vegetation Index (EVI)
inputs for regional ET mapping and monitoring. At high
northern latitudes, Thermal IR observations are strongly
constrained by cloud cover and atmospheric aerosols, while
GMAO meteorological data have relatively coarse spatial
resolution (1.00 � 1.25 degree) and exhibit significant error
relative to surface observations. Alternatively, brightness
temperature information from satellite microwave radio-
meters are sensitive to surface temperature and moisture
conditions [Jones et al., 2007] and are relatively unaffected
by low solar illumination, cloud cover, smoke, and atmo-
spheric aerosol effects. Twice-daily observations at high
latitudes (>50�N) are available from polar-orbiting plat-
forms such as the Advanced Microwave Scanning Radiom-
eter on EOS (AMSR-E) currently operating with MODIS on
the NASA EOS Aqua satellite. Jones et al. [2007] applied
AMSR-E observations for retrieval of daily soil temperatures
(<5 cm depth) across a regional network of boreal forest,
grassland and tundra sites. Strong correlations between
satellite microwave brightness temperatures and surface
air temperature observations have also been noted for boreal
Arctic regions [Jones et al., 2007; Pulliainen et al., 1997].
Humidity of the troposphere has been derived from thermal
infrared and microwave sounding information from AIRS/
AMSU-A [Fetzer et al., 2003]. Surface humidity has also
been derived using land surface temperatures from AMSR-E

[Jones et al., 2007] and MODIS LST [Hashimoto et al.,
2008]. Surface ET estimates from microwave-derived soil
moisture and thermal IR information have previously been
explored by Chanzy and Kustas [1994]. These studies
indicate that surface temperature and moisture information,
which is closely coupled with latent and sensible heat
fluxes, may be provided by satellite microwave radiometers
such as AMSR-E for remote sensing–based ET models.
[6] In this study the RS-ET method is applied to assess

spatial and seasonal patterns in ET across the pan-Arctic
domain above 50�N. The RS-ET algorithm is compared
with tower-based ET and meteorological observations
across a North American regional network of tundra and
boreal forest and grassland study sites by employing three
alternate sets of driving daily meteorological data: (1) local
weather station observations of baseline daily meteorology,
(2) surface temperature (minimum daily and daily average
air temperatures) and relative humidity (vapor pressure
deficit) information derived from AMSR-E, and (3) GMAO
reanalysis surface meteorology. The ET estimates produced
from each meteorological data set are compared with eddy
covariance flux tower-based ET observations at six boreal
Arctic tower sites over the 2000–2004 period to assess
sensitivity of the RS-ET results to alternate meteorology
inputs, and to test the performance of the global RS-ET
model to estimate ET relative to tower observations. The
purpose of this study is to (1) quantify spatial variability
in seasonal and annual ET for the pan-Arctic domain,
(2) explore the sensitivity of ET predictions to model errors
introduced from alternative meteorological drivers across a
transect of increasing surface control to evaporation, and
(3) test the feasibility of remotely sensed microwave
meteorology to complement current reanalysis inputs. The
daily flux of ET can be expressed in equivalent units of both
energy (W m�2) and water (kg m�2 or mm s�1). The
conversion from latent energy fluxes (LE, W m�2) to ET
(mm s�1) is ET = LE/l, where l is the latent heat of
evaporation, which varies with temperature. For this inves-
tigation we compared mean daily LE rates between tower
measurements and corresponding RS-ET model results for
the six tower sites. We also evaluated spatial and temporal
patterns in cumulative monthly and annual ET expressed as
water equivalent depth (mm yr�1 and mm month�1).

2. Eddy Flux Towers

[7] Model performance was assessed across a North
American latitudinal transect (>50�N) of six eddy covari-
ance flux towers representing grassland, boreal forest and
tundra biomes. The six study sites represent four distinct
vegetation types (Table 1 and Figure 1) including coastal
lowland wet sedge tundra, boreal evergreen needleaf forest,
boreal deciduous broadleaf forest, and northern temperate
grassland. Wet sedge tundra dominates in moist, poorly
drained lowland and coastal areas. Coastal wet sedge tundra
is represented by the Barrow (BRW) and Atqasuk (ATQ)
sites and is characterized by low topography and a shallow
water table with numerous thaw lakes. The vegetation is
predominantly composed of low-growing sedges and
mosses, interspersed with areas of shallow standing water.
Soils are highly organic and consist of a shallow active layer
that thaws each growing season and is underlain by contin-
uous permafrost [Oechel et al., 2000]. The BRW site
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window contains two flux towers representing relatively
productive (BRW1) and less productive (BRW2) tundra. The
BRW1 tower is located along the edge of a drained coastal
lagoon with a greater proportion of standing water relative
to the adjacent BRW2 tower footprint [Harazono et al.,
2003; Oechel et al., 1998]. Detailed classifications of land
cover heterogeneity of the Barrow region indicate that
drained thaw lake basins similar to the BRW1 tower
footprint occupy much of the Arctic Coastal Plain [Hinkel
et al., 2003]. Owing to the large proportion of water surface
at the BRW and ATQ towers, ET is mainly composed of
evaporation from both open water and wet soil vegetation
surfaces. The Northern Old Black Spruce (NOBS) tower
site is dominated by mature black spruce (Picea mariana)
forest with a canopy height of 10–13 m, low topographic

relief, with understory composed of mosses (Pleurozium
and Sphagnum spp.) overlying discontinuous permafrost
[Dunn, 2006]. The Old Aspen (OAS) tower site is domi-
nated by mature aspen (Populus tremuloides) forest with a
mean canopy height of 21 m, an understory composed of
hazelnut (Corylus cornuta Marsh.) and low topographic
relief [Griffis et al., 2004].
[8] Subgrid-scale heterogeneity in surface meteorology

within the relatively coarse GMAO (1.00 � 1.25 degree)
and AMSR-E (60 � 60 km) footprints may result in large
differences between satellite remote sensing and tower-
based ET estimates that reflect finer-scale land cover,
moisture, and temperature patterns (sections 4.1 and 4.2).
A MODIS 1-km resolution global land cover type 2
classification (UMD land cover classification) was used to

Figure 1. Distribution of the six eddy flux tower sites and the corresponding MODIS 12C1 type 2 land
cover (UMD LC). ENF, evergreen needle forest; EBF, evergreen broadleaf forest; DNF, deciduous needle
forest; DBF, deciduous broadleaf forest; MF,mixed forest; CSH, closed shrublands; OSH, open shrublands;
WSV, woody savannas; SV, savannas; GRS, grassland; CRP, cropland; urban, urbanized; barren, barren or
sparsely vegetated land. Areas in blue represent open water and other nonvegetated surfaces.

Table 1. Locations, Abbreviations, Latitude, Longitude, Time Period and Annual Vegetation Information at the Tower Sitesa

Site Abbreviation Latitude Longitude Year LAI EVI MA T MAVPD UMD LC Tower LC

Barrow, AK (1)b BRW1 71.32 �156.62 2000–2003 0.91 0.30 3.2 0.10 OSH, GRS Wet-sedge Tundra
Barrow, AK (2)b BRW2 71.32 �156.62 2000–2002 0.71 0.21 – – OSH, GRS Wet-sedge Tundra
Atqasuk, AK ATQ 70.47 �157.41 2000–2003 0.83 0.18 6.7 0.23 OSH, GRS Wet-sedge Tundra
NSA-OBS, Manitoba, CN NOBS 55.88 �98.48 2000–2004 2.28 0.26 13.1 1.17 ENF Boreal spruce forest
SSA-OAS, Sask., CN OAS 53.63 �106.20 2002–2004 2.48 0.28 11.6 0.69 MF Boreal aspen forest
Lethbridge, Alberta, CN LTH 49.71 �112.94 2002–2004 0.50 0.19 14.9 1.15 GRS Grassland

aLAI, annual mean MODIS LAI; EVI, annual mean MODIS EVI; MAT, annual mean day-time air temperature in �C; MAVPD, annual mean day-time
vapor pressure deficit in kPa; UMD LC, MODIS land cover type 2 within the 3 � 3 km windows overlying each tower site; Tower LC, the dominant
vegetation community of within each 1 km2 tower footprint; ENF, evergreen needle forest; MF, mixed forest; OSH, open shrublands; GRS, grassland.

bBRW1 and BRW2 are located within 2 km of each other and represent contrasting moisture conditions [Engstrom et al., 2006]. Insufficient data were
available to calculate MA T and MAVPD for BRW2.
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assess land cover attributes within 60 � 60 km windows
centered on each study site location (Figure 1) [Jones, 2007;
Oak Ridge National Laboratory Distributed Active Archive
Center, 2006]. These regional windows are approximately
of the same resolution as the AMSR-E sensor footprint at
6.9 GHz frequency (60 km � 60 km). The BRW and ATQ
sites contained 87% and 12% respective open water cover-
age. The bulk of open water present at BRW is represented
by the Arctic Ocean, while open water at ATQ is composed
of numerous thaw lakes. The NOBS and OAS site windows
were composed of approximately 9% and 8% open water,
respectively, while Lethbridge (LTH) had <1% open water.
Tundra vegetation is identified as either shrubland or grass-
land by the UMD land cover classification; open shrubland
occupied approximately 17% of the BRW window, while
grassland occupied from 60% of the ATQ window to <1%
of the other tundra site windows [Jones, 2007]. Although
the two towers at BRW (BRW1 and BRW2) are located
about 2 km apart, they represent contrasting moisture
conditions [Engstrom et al., 2006]. BRW1 (71.3225�N,
156.6259�W) is relatively productive with an average
LAI of 0.91 and 0.71 for BRW2 (71.3201�N, 156.6223�W)
(Table 1). Cropland and grassland were dominant land
cover types for LTH, occupying 59% and 34% of the
window, respectively. Evergreen needleleaf forest was dom-
inant at NOBS (80%), but was also present at OAS (25%).
The OAS window also had significant proportions of mixed
coniferous and deciduous forest (28%) and cropland (39%).
The MODIS land cover map showed urban areas within the
LTH and NOBS windows, but this cover type represented
<1% of the total window area.

3. Methodology

3.1. Description of the RS-ET Algorithm

[9] The RS-ET algorithm of Mu et al. [2007b] was
developed from Cleugh et al. [2007] using a Penman-
Monteith (P-M) approach [Monteith, 1964] and MODIS

sensor data. A flowchart of the RS-ET algorithm structure
and associated model inputs and outputs is presented in
Figure 2 [Mu et al., 2007b]. The ET term is the sum of plant
transpiration and soil evaporation. The daily net incoming
radiation is linearly partitioned between the canopy and soil
surface using the vegetation cover fraction (FC) derived
from the MODIS EVI (see Appendix A).
[10] Canopy transpiration is constrained by the surface

resistance (s m�1) term, which is the inverse of canopy
conductance to water vapor exchange with the atmosphere.
Surface resistance is calculated on the basis of daily
minimum air temperature (Tmin) and vapor pressure deficit
(VPD). We calculate the environmental constraints to ET by
minimum air temperature (Tmin) and VPD as

m T minð Þ ¼
1:0 T min � T min open

T min�T min close

T min open� T min close
T min close < T min < T min open

0:1 T min � T min close

8>><
>>:

ð1Þ
m VPDð Þ ¼
1:0 VPD � VPD open

VPD close� VPD

VPD close� VPD open
VPD open < VPD < VPD close

0:1 VPD � VPD close

8>><
>>:

where close indicates nearly complete inhibition (full
stomatal closure) and open indicates no inhibition to canopy
transpiration [Mu et al., 2007b, Table 1]. When Tmin is
lower than the threshold value Tmin_close, or VPD is
higher than the threshold VPD_close, temperature or water
stress will cause stomata to close almost completely, halting
canopy transpiration. On the other hand, when Tmin is
warmer than Tmin_open, and VPD is lower than VPD_open,
there will be no temperature or water stress limitations on

Figure 2. Flowchart showing the logic behind the MODIS ET Algorithm for calculating daily MODIS
ET [Mu et al., 2007b, Figure 1].
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transpiration. The multipliers range linearly from 0.1 (nearly
total inhibition of stomatal conductance and transpiration) to
1 (no inhibition) and vary by land cover type as defined in a
general Biome Properties Look-Up Table (BPLUT) [Mu et
al., 2007b, Table 1]. A similar BPLUT is used to define
general biophysical properties for land cover classes in the
NASA MODIS (MOD17) production efficiency model–
based global mapping of GPP and NPP [Running et al.,
2004; Zhao et al., 2005; F. A. Heinsch et al., User’s Guide:
GPP and NPP (MOD17A2/A3) Products, NASA MODIS
Land Algorithm, available at http://ntsg.umt.edu/modis/
MOD17UsersGuide.pdf].
[11] Soil evaporation is calculated as a nonlinear reduc-

tion from estimated soil evaporation under potential (no
moisture limitation) conditions using the Penman-Monteith
equation (A1). The actual soil evaporation (A7) is calculat-
ed as a reduction from potential conditions following Fisher
et al. [2008] with parameters fitted to the tower LE
observations from the global RS-ET algorithm application
of Mu et al. [2007b]. This approach is based on the
complementary relationship hypothesis [Bouchet, 1963],
where VPD and relative humidity are used as a surrogate
for soil wetness. This allows an implicit treatment of the
effect of soil water availability in the RS-ET algorithm as
accurate soil moisture information is not currently available
for continental regions. The lower atmosphere is highly
responsive to land surface conditions [Bouchet, 1963;
Morton, 1983], and VPD has been used as an indicator of
environmental water stress at the regional scales represented
by global satellite remote sensing [Running and Nemani,
1988; Granger and Gray, 1989]. Mu et al. [2007a] found
that VPD alone captured interannual variability in vegeta-
tion water stress from both the atmosphere and soil over
much of China and the conterminous U.S., though it may
fail to capture seasonal water stress in dry regions experi-
encing strong summer monsoons.
[12] Mu et al. [2007b] evaluated the RS-ET algorithm at

19 AmeriFlux eddy covariance flux tower sites distributed
across North America. Daily RS-ET derived fluxes for 2001
were obtained using tower observed meteorology and
alternative GMAO surface meteorological inputs. The root
mean square error (RMSE) of differences between tower
flux measurements of 8-day mean LE- and RS-ET-based
results averaged over the 19 towers was 27.3 W m�2 and
29.5 W m�2 (for ET, RMSE is 0.61 mm d�1 and 0.68 mm
d�1, respectively) using tower and GMAO meteorological
inputs, respectively. The average bias of the RS-ET LE
results relative to the tower measurements was �5.8 W m�2

using tower meteorological inputs and �1.3 W m�2 using
GMAO inputs.
[13] For this investigation, the RS-ET model was applied

at the six boreal Arctic tower sites (Table 1) and multiyear
(2000–04) time period where data were available by
extracting 3 � 3 km2 cutouts of MODIS 1-km resolution
LAI, land cover and EVI, and MODIS 0.05� resolution
albedo time series surrounding each site location as model
inputs. The AMSR-E derived meteorological data are rep-
resentative of conditions within an approximate 60 km �
60 km (6.9 GHz) resolution footprint (the actual footprints
are egg shaped at 43 km � 73 km) surrounding each tower
location (see section 3.4). Daily LE was estimated on a grid
cell by cell basis within each site window using the MODIS

data series and three alternate sets of daily surface meteo-
rology inputs. The daily LE results were then spatially
averaged within each site window and compared with
corresponding daily tower observations. The RS-ET model
was also applied with daily MODIS and GMAO surface
meteorological inputs to estimate monthly and annual ET
for all land areas above 50�N to assess regional patterns and
temporal variability in ET across the pan-Arctic domain.

3.2. Input MODIS Data

[14] Continuous daily time series of MODIS 1-km reso-
lution LAI, NDVI, EVI, and 0.05� resolution albedo inputs
to the RS-ET model were constructed for each 3 � 3 km2

site window. These daily time series were constructed by
filling in erroneous quality control (QC) flagged or missing
data values through temporal linear interpolation of adjacent
good quality data following Zhao et al. [2005]. The 8-day
MODIS LAI (MOD15A2) [Myneni et al., 2002] and 16-day
MODIS NDVI and EVI (MOD13A2) [Huete et al., 2002,
2006] time series contain some cloud-contaminated or
missing data. According to the MOD15A2 quality assess-
ment scheme provided by Myneni et al. [2002], LAI values
retrieved by the main algorithm (i.e., Radiation Transfer
process, denoted as RT) are most reliable, and those
retrieved by the backup algorithm (i.e., the empirical
relationship between FPAR/LAI and NDVI) are less reliable
because the backup algorithm is employed mostly when
cloud cover, strong atmospheric effects, or snow/ice are
detected. For this investigation, only good quality RT
retrievals were used to construct complete LAI time series.
We used the 10th band of the White-Sky Albedo from the
0.05� resolution 16-day MODIS MOD43C1 BRDF product
[Lucht et al., 2000; Schaaf et al., 2002] (http://www-modis.
bu.edu/brdf/userguide/cmgalbedo.html) to define surface
albedo. These data were used with GMAO solar radiation
to determine mean daily net solar radiation inputs for the
RS-ET model calculations. The MODIS 8-day 1-km UMD
land cover product was also used to define general land
cover properties of the 9 pixels surrounding each site
location.

3.3. Operational GMAO Meteorology

[15] The 1.00� � 1.25� resolution of GMAO reanalysis
meteorological data is much coarser than each 1-km
MODIS pixel. Zhao et al. [2005] found that, in the
Collection 4 MOD17 algorithm (MOD17), adjacent 1-km
pixels within each 1.00� � 1.25� GMAO grid cell inherited
the same meteorological data, creating a noticeable GMAO
footprint [Zhao et al., 2005, Figures 1a and 1c]. To mitigate
these effects, we employed a spatial nonlinear interpolation
of coarse resolution GMAO data to each 1-km2 MODIS
pixel using the four GMAO cells surrounding a given pixel
as proposed by Zhao et al. [2005]. Daily ET was then
computed across the pan-Arctic domain over 2000–2006
and for each tower site over 2000–2004 using the
corresponding interpolated GMAO daily time series.

3.4. AMSR-E Meteorology

[16] Daily brightness temperature (Tb) measurements
from AMSR-E were used to obtain alternate surface meteo-
rological inputs to the RS-ET model for temperature (daily
minimum and daytime average air temperatures) and humid-
ity (VPD). The AMSR-E sensor operates withMODIS on the
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NASA EOS Aqua satellite platform, which was launched in
May of 2002. The AMSR-E sensor measures multifrequency
brightness temperatures at 6.9, 10.7, 18.7, 23.8, 36.5, and
89 GHz wavelengths, for vertical and horizontal polariza-
tions. Aqua is polar orbiting with 1 A.M./P.M. equatorial
crossing times, providing multiple acquisitions twice daily
in polar regions (>50�N). Observations therefore occur
between 2 and 4 A.M. (P.M.) local time for the descending
(ascending) overpass. We extracted daily time series obser-
vations from the L2A swath data product [Ashcroft and
Wentz, 1999; Jones et al., 2007] centered over each study
site location. The sensor footprint varies with measurement
frequency from approximately 5-km (89 GHz) to 60-km
(6.9 GHz) spatial resolution. The L2A product includes all
frequencies resampled to the 6.9 GHz native resolution and
therefore can be considered representative of a �60 km �
60 km spatial resolution.
[17] Previous studies have used microwave radiometry to

derive air and soil temperatures in arctic and boreal regions.
Pulliainen et al. [1997] compared regression and radiative
transfer methods for determining air temperature from the
Special Sensor Microwave/Imager (SSM/I) in Finland. Fily
et al. [2003] applied a polarization difference method to
retrieve screen height air temperatures in northern Canada.
Jones et al. [2007] developed methods to retrieve surface
(<10 cm depth) soil temperatures from AMSR-E daily Tb
time series for boreal forest and Arctic tundra biophysical
monitoring sites across Alaska and Canada. The seasonal
pattern of microwave emission and relative accuracy of the
soil temperature retrievals had an overall RMSE of 3.1–
3.9 K, with larger error occurring in winter, during periods
with dynamic snow cover and freeze–thaw state conditions.
[18] For this investigation we employed an empirical

multiple regression approach for retrieval of daily minimum
(Tmin) and average day-time (Tday) screen-height (	2 m)
air temperatures from AMSR-E multifrequency Tb time
series for each site location. The equation uses vertically
polarized Tb data at 10.7, 18.7, and 89 GHz frequencies,
and H/V polarization ratios of the 6.9 GHz and 89 GHz
channels. Empirical relationships were established between
surface weather station–based air temperature time series at
each site and corresponding AMSR-E Tb measurements;
descending (1 AM) overpass Tb data were fit to Tmin and
ascending (1 PM) overpass Tb data were fit to maximum
daily air temperature (Tmax) measurements for each site.
Thawed season data from 2002 to 2003 (BRW2 was
excluded from this phase owing to limited data coverage)
were used for fitting model parameters, whereas 2004 was
reserved for the accuracy assessment. The thawed season
was defined by temporal shifts in AMSR-E brightness
temperatures corresponding to the transition from snow
covered frozen conditions to predominantly thawed con-
ditions [Jones et al., 2007]. The Tday term was estimated
from daily Tmin and Tmax by assuming a simple sinusoidal
temperature curve. Daily average VPD was estimated from
Tmin and Tday on the basis of the assumption that Tmin is
equivalent to the daily dew point [Kimball et al., 1997].
This assumption generally holds for boreal and arctic
regions under nonfrozen conditions, where relatively abun-
dant surface water provides a reservoir for evaporation and
low nighttime temperatures constrain absolute humidity
through dewfall.

3.5. Tower Meteorology and Flux Data

[19] The boreal Arctic study sites contain operational
eddy covariance flux tower instrumentation for measuring
land-atmosphere exchanges of energy, carbon dioxide and
moisture as well as temperature and the 3D components of
wind speed above the canopy [Rana and Katerji, 2000;
Baldocchi et al., 2001]. The automated tower flux measure-
ments are collected 20 times per second and are averaged
every 30 min. Water vapor concentration is measured along
the height of the tower using either closed or open path
infrared gas analyzers and flux is inferred from wind speeds
measured by three-dimensional sonic anemometers. Energy
balance closure is typically underestimated by 10–30% for
such systems indicating some systematic uncertainty in
energy flux estimates [Baldocchi, 2008]. The flux tower
meteorological data were used to assess accuracy in
GMAO/AMSR-E meteorology and model LE (ET) relative
to local site observations. The temporal period of tower
measurements for this investigation included the years
2000–2004 where available (Table 1). The BRW2 data
was only available for 2000–2002. The year 2003 repre-
sented the most continuous coverage of incoming solar
radiation; therefore this year’s data was used for comparison
to the GMAO solar radiation. The reported half-hourly data
was aggregated to a daily time step for this investigation.
We only selected days with complete half-hourly tower LE
measurement series to compare with RS-ET model results.
The tower observations employed in this study were LE and
the incoming solar radiation (Rs; W m�2), minimum daily
air temperature (Tmin; �C), daytime average air temperature
(Tday; �C), and daytime average vapor pressure deficit
(VPD; kPa). Daytime averages were defined as the average
over the period of the day when Rs > 0. The net incoming
solar radiation (Rsn) is calculated using Rs and surface
albedo.

4. Results

4.1. Assessment of GMAO and AMSR-E Meteorology
Relative to Tower Observations

[20] Relations between GMAO and AMSR-E meteoro-
logical estimates relative to corresponding daily tower
observations from the 6 tower sites are displayed in
Figure 3. The RMSE accuracy of air temperature and
VPD estimates relative to tower observations were on the
order of 2.8–3.4�C and 0.3–0.4 kPa. The AMSR-E-based
Tmin and Tday retrievals showed generally smaller
(�0.4�C) errors relative to GMAO derived temperatures.
The AMSR-E results tended to over predict Tday by 1.5�C,
while the GMAO reanalysis tended to over predict Tmin by
1.7�C. The AMSR-E results also produced more favorable
estimates of VPD with RMSE of 0.30 kPa compared to
0.40 kPa from the GMAO data. The AMSR-E VPD results
showed a dry bias relative to tower observations by �0.2–
0.3 kPa for wet atmospheric conditions (VPD < 0.5 kPa)
and a wet bias during dry (VPD � 0.5 kPa) conditions. The
RMSE and mean residual errors were generally consistent
with or smaller than GMAO derived results (Figure 3). The
GMAO-based Rsn inputs had an RMSE accuracy of 64.9 W
m�2 relative to tower observations. GMAO tended to under
predict Rsn relative to local tower conditions with mean
residual error in Rsn from 3.6 to 43.3 W m�2, even though
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the GMAO product accounted for approximately 70 percent
of the variance in tower Rsn observations.
[21] Site specific relationships between GMAO and

AMSR-E meteorology inputs and tower observations are
summarized in Table 2. The RMSE between tower- and
AMSR-E-based temperatures for individual sites ranged
from 1.9�C to 3.3�C for Tmin and 2.1�C to 3.4�C for Tday.
The GMAO temperature RMSE results ranged from 2.1�C
to 4.9�C for Tmin and 2.1�C to 5.6�C for Tday. Both
methods showed the greatest temperature error at the
BRW1 site, likely due to the coastal location of the BRW1

towers and large amount of open water in both the GMAO
and AMSR-E footprints. The BRW1 and BRW2 locations
are located within 2 km of each other and tower observa-
tions at the two locations agree to within 0.4–0.5�C for air
temperatures and 0.02 kPa for VPD. The largest discrepan-
cy between the two data sets was for Rsn at BRW2, which
was approximately 34 W m�2 higher than the BRW1

observations. The GMAO and AMSR-E results also showed
a dry bias and over predicted VPD at BRW1, BRW2, and
ATQ, all sites located within 50 km of the coast in low relief
where tower observations are likely influenced by marine
advection and evaporation from locally abundant freshwater
lakes. The GMAO and AMSR-E results showed a wet bias
in daily VPD relative to tower observations at the NOBS
and LTH sites. These biases were 0.34 and 0.03 kPa for
GMAO (0.37 and 0.18 kPa for AMSR-E), respectively. The
RMSE differences between GMAO-based Rsn and individ-

ual site observations varied from 43.9 to 74.5 W m�2 and
generally underestimated radiation at higher-latitude loca-
tions (>55�N, all sites from NOBS northward), but over
estimated radiation at lower-latitude sites (OAS and LTH).
[22] Differences between GMAO and AMSR-E meteoro-

logical inputs relative to tower observations were largely
attributed to algorithm representation, which includes sub-
grid-scale spatial heterogeneity in surface meteorology
within the relatively coarse footprints of the satellite sensor
and reanalysis products and process parameterization. The
tower observations represent local conditions within a
relatively small area (approx. �1 km2) surrounding
each tower. In contrast, the AMSR-E results represent an
approximate 60 km � 60 km footprint, while GMAO data
are spatially interpolated from coarse (1� � 1.25�) resolu-
tion (section 3.2). Despite these scale differences, both
GMAO and AMSR-E derived daily meteorology inputs
compared favorably with surface observations over a wide
range of environmental conditions represented by the boreal
Arctic regional tower transect. The AMSR-E-based temper-
ature and VPD results also generally compared more favor-
ably to the tower observations than the GMAO results, due, in
part, to finer spatial resolution of the AMSR-E footprint
relative to the GMAO reanalysis. The wet bias in AMSR-E
derived VPD estimates at NOBS and LTH is attributed to
Tmin departure from dew point temperature (Tdew) at these
two locations.

4.2. Validation of RS-ET Algorithm at Tower Sites

[23] The average RS-ET-based LE and meteorological
data of the 3 � 3 1-km pixels surrounding each study site
were compared with tower LE observations. First, we
compared seasonal results between the tower LE observa-
tions and LE estimates driven by the three sets of meteo-
rology and MODIS input data. The seasonal patterns of
tower observed and model estimated daily LE are presented
in Figure 4 for all the six sites over the time period with
available data. The LE results derived from the three
alternate sets of meteorological inputs generally capture
seasonality of the tower observed LE. Corresponding scat-
terplots and 1:1 relations between RS-ET derived LE and
tower observations (Figure 4) indicate that the LE estimates
show similar magnitudes relative to the tower-based LE
observations except for LTH. Both model and observed LE
time series ranged between characteristically high LE rates
during vegetation growing seasons and seasonally low rates
in winter. The model results generally showed less year-to-
year LE variability than tower-based fluxes. For example,
tower LE observations at the NOBS site were relatively low
in the summer of 2001 compared to other years, while
model LE estimates from site and GMAO meteorology
inputs were much higher than tower LE observations, and
were nearly as high as 2002 and 2003 summer fluxes. The
magnitudes of model LE estimates in the other years were
closer to the tower observations, and were lower in the
summers of 2000 and 2004 than in the summers of 2002
and 2003.
[24] Figure 4 shows strong seasonal variation in LE at the

six tower sites. Part of the LE seasonality is driven by
variation in net radiation during the year due to solar
forcing. We examined the relative skill of the RS-ET model
with respect to the Priestley and Taylor [1972] model–
based equilibrium evaporation since the latter only depends

Figure 3. Comparison of AMSR-E and GMAO meteor-
ological variables to tower observations at all sites; solid
lines represent the linear least squares regression line, while
dashed lines represent a 1:1 relationship. See Table 2 for
site-specific results, temporal coverage of data, and statistic
abbreviations.
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on radiation and temperature, with minimal vegetation con-
trol on ET:

lE ¼ 1:26sA

sþ g
ð2Þ

where lE (W m�2) is the latent heat flux and l (J kg�1) is
the latent heat of evaporation; s (Pa K�1) and is the slope of
the curve relating saturated water vapor pressure to
temperature; A (W m�2) is available energy. g (Pa K�1) is
the psychrometric constant. Figure 5 shows the RS-ET LE
estimates driven by tower observed meteorology and the
potential LE (PLE) calculated with equation (2) driven by
the same tower observed meteorology. The RS-ET LE
estimates are reduced from PLE with increases in the
surface resistance to evapotranspiration. The 8-day RMSE
driven by the tower meteorology data reduced from 27.6 W
m�2 to 14.3 W m�2 averaged over all the six towers.
[25] The RS-ET model was developed to estimate ET

operationally on a global basis using MODIS vegetation
and GMAO surface meteorological inputs. The MODIS
LAI and EVI and BRDF products are produced at respec-
tive 8-day and 16-day intervals and represent average
conditions within each time period, even though these
parameters likely vary within each 8- or 16-day time period.
The RS-ET results were produced at 8-day intervals con-
sistent with other NASA MODIS products and to reduce
potential bias introduced by interpolating MODIS data

series to finer temporal scales. To evaluate RS-ET model
performance, we calculated RMSE values, correlations (R)
and mean residual biases between mean 8-day tower obser-
vations and model estimated LE derived from the three
alternate meteorological data sources, including daily tower,
GMAO and AMSR-E meteorological inputs. To facilitate
comparisons among the 8-day LE results, we only com-
pared results having complete sets of daily observations
across all three data sets including tower LE observations,
and tower, GMAO and AMSR-E derived meteorology. For
NOBS and OAS over the 2002–2004 AMSR-E data
collection period, model results derived from tower observed
meteorology inputs can capture the seasonality and mag-
nitude of observed LE. The correlation coefficients are
0.60 and 0.81, RMSE values for 8-day LE are 32.4 W m�2

and 27.2 W m�2, mean residual biases are 18.1 W m�2

relative to average LE of 64.4 W m�2 and 7.9 W m�2 to
average LE of 79.5 Wm�2 for NOBS and OAS, respectively
(Table 3 and Figure 6). Averaged over the six tower sites and
all 92 8-day time periods, average LE from the tower
observations is 62.1 Wm�2. Model-based LE results derived
from site meteorology inputs for all sites and 8-day time
periods produced amean RMSE of 14.3Wm�2, a correlation
of 0.62, and bias of �5.3 W m�2 compared to tower
observations. LE estimates driven by AMSR-E and GMAO
meteorology inputs were very similar to the LE estimates
driven by tower observed meteorology data (Table 3 and
Figure 6). The 8-day RMSE and bias between the LE

Table 2. Site Specific Statistics for the Comparison of AMSR-E and GMAO Meteorological Variables to Tower Observationsa

R2 RMSE MAE MR N

BRW1

Tmin 0.50(0.43) 4.5(3.3) 3.4(2.6) 2.5(�0.4) 111(111)
Tday 0.55(0.58) 5.6(3.4) 4.3(2.9) 3.6(2.0.) 111(111)
VPD 0.08(0.00) 0.37(0.25) 0.25(0.19) 0.23(0.17) 113(113)
Rsn 0.56– 43.9– 35.3– 22.1– 70–

BRW2

Tmin 0.41(0.31) 3.5(3.0) 2.6(2.6) 1.5(0.4) 103(84)
Tday 0.51(0.56) 4.8(3.0) 3.3(2.4) 2.9(1.9) 103(81)
VPD 0.24(0.1) 0.34(0.16) 0.2(0.14) 0.18(0.12) 103(81)
Rsn 0.60– 45.5– 35.8– 15.6– 103–

ATQ
Tmin 0.84(0.84) 2.7(1.9) 2.0(1.5) 1.6(�0.9) 101(100)
Tday 0.84(0.88) 3.4(2.1) 2.7(1.7) 2.0(1.3) 101(100)
VPD 0.46(0.57) 0.43(0.26) 0.31(0.22) 0.29(0.2) 100(99)
Rsn 0.40– 54.45– 40.4– 13.5– 78–

NOBS
Tmin 0.64(0.78) 4.9(3.0) 4.1(2.4) 3.7(2.1) 141(129)
Tday 0.86(0.94) 2.2(2.4) 1.8(2.1) 0.5(2.0) 140(118)
VPD 0.75(0.74) 0.46(0.45) 0.4(0.4) �0.4(�0.3) 117(99)
Rsn 0.61– 73.2– 56.35– 36.3– 161–

OAS
Tmin 0.89(0.84) 2.1(2.6) 1.6(2.1) 0.2(�0.7) 198(187)
Tday 0.92(0.94) 2.1(2.5) 1.6(1.8) 0.7(1.5) 198(167)
VPD 0.66(0.74) 0.29(0.22) 0.2(0.18) 0.1(0.06) 198(167)
Rsn 0.62– 74.5– 56.2– 33.6– 172–

LTH
Tmin 0.8(0.79) 2.9(2.8) 2.3(2.2) 1.5(0.5) 220(187)
Tday 0.79(0.78) 3.5(3.4) 2.8(2.5) �1.8(1.5) 220(159)
VPD 0.47(0.69) 0.49(0.34) 0.39(0.26) �0.18(�0.03) 216(157)
Rsn 0.67– 68.3– 53.8– 43.3– 212–

aGMAO, Global Modeling and Assimilation Office. Advanced Microwave Scanning Radiometer on EOS (AMSR-E) statistics are shown in parentheses.
Temporal coverage includes thawed season for 2004 for Tmin, Tday, and vapor pressure deficit; summer 2003 for Rsn; and 19 June to 30 September 2002
for the BRW2 site (see sections 3.4 and 3.5). Tmin, minimum daily air temperature (�C); Tday, daytime average air temperature (�C); VPD, vapor pressure
deficit (kPa); Rsn, net incoming solar radiation (W m�2); R2, coefficient of determination; RMSE, root mean square error; MAE, mean absolute error; MR,
mean residual (Estimate � Observation); N, sample size in days.
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estimates and LE observations was approximately 22.6 and
9.3 percent of average 8-day LE observations, respectively.
[26] Figure 6b shows the Relative Error (RE: RMSE/

mean observed latent heat flux) (%) differences between
tower observed and model estimated mean 8-day latent
energy fluxes derived from the three alternate sets of

meteorological data inputs (Figure 6b and Table 3). Though
there are big differences in RMSE among different tower
sites, the RE differences between different vegetation types
are small except for LTH, because high RMSE corresponds
to high LE for the forests, low RMSE and low LE for the
grasslands ATQ, BRW1 and BRW2.

Figure 4. Comparison of daily tower ET observations (black dots, OBS) with ET estimates driven by
(1) flux tower (blue dots), (2) GMAO (red dots), and (3) AMSR-E (green lines) derived from
meteorological data at the LTH, NOBS, and OAS sites (Table 1 and Figure 1).
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[27] There are several possible reasons for the high
relative error at LTH. First, there may be errors associated
with tower LE observations or MODIS LAI estimates at
LTH. Previous tower studies indicate underestimation of the
surface energy balance by 10–30% [Baldocchi, 2008],
though the RS-ET results show a consistent underestimation
of tower LE. We compared input MODIS LAI, EVI, and
GMAO Tmin, daytime average temperature (Tday), VPD,
net incoming radiation (netRad) at LTH and NOBS in

Figure 7. The magnitudes of the meteorological variables
at LTH and NOBS are very close. In summer, the maximum
EVI at both sites is approximately 0.34, when the vegetation
cover fraction is 68% using equation (A3). The net radiation
allocated to plants and soil at both sites is similar according
to equation (A4). Some studies have suggested that the
atmospheric humidity conditions reflect the dryness of the
ground surface and VPD can be used as an indicator of
environmental water stress [Morton, 1983; Running and

Figure 5. RS-ET LE estimates driven by tower-observed meteorology and the potential LE (PLE)
calculated with Priestley-Taylor equation driven by the same tower-observed meteorology.
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Nemani, 1988; Granger and Gray, 1989; Mu et al., 2007a],
while water limitations on surface conductance in the RS-
ET model are expressed by VPD only. In summer, when
EVI at both sites approaches the seasonal maximum, the
surface meteorology produces similar predicted soil evapo-
ration (equations (A5–A7)). So the main difference between
the two sites comes from plant transpiration, which is
sensitive to canopy conductance, constrained by both

meteorology and LAI (equations (1) and (A2)). The limi-
tations on canopy conductance come from meteorology and
LAI (equations (1) and (A2)). Owing to the similar mete-
orology, canopy differences between the two sites comes
from LAI. Higher LAI at NOBS (Figure 7a) should result in
higher canopy conductance transpiration than that at LTH,
which results in higher ET (soil evaporation + plant tran-
spiration) at NOBS. But in Figure 4, ET observations at
NOBS in summer are much lower than those at LTH, which
implies that ET observations or MODIS LAI estimates may
contribute to the large RMSE differences at LTH. Also, as in
equation (A2), CL is set to be constant for all different
vegetation types, which might cause the biases in LE
estimates. Other potential contributions to tower model
differences include spatial scale differences between tower
footprint and landscape resolutions commensurate with
GMAO and AMSR-E surface meteorological inputs and
RS-ET algorithm limitations as discussed in section 4.5.
[28] There were strong correlations between LE observa-

tions at the six tower sites and model LE estimates produced
from the three meteorological data sets averaged over each
8-day time period and 3 � 3 km site window. Correlation
coefficients between tower LE observations and RS-ET
model results were 0.62 using tower meteorology inputs;
0.67 using GMAO inputs and 0.66 using AMSR-E derived
meteorological inputs. Averaged over all six tower sites and
8-day time periods with complete meteorology and LE
measurement series, the RMSE differences between average
LE observations and RS-ET estimates from tower, AMSR-E
and GMAO meteorology inputs were 13.1, 17.2 and 12.4
percent of mean LE observations, respectively. Model
results from GMAO-based meteorology inputs produced
LE bias of �4.2 W m�2, followed by model bias of �5.3 W
m�2 and �7.8 W m�2 from respective site and AMSR-E
meteorology inputs (Table 3 and Figure 6). These results
and those from Table 3 indicate that RS-ET model bias was
lowest using GMAO meteorology inputs, followed by tower
observed and AMSR-E-based meteorology inputs. However,
the RS-ET fluxes derived from the AMSR-E meteorology
inputs produced the lowest RMSE relative to the other
meteorological sources.

4.3. RS-ET Meteorology Error Sensitivity Analysis

[29] An error sensitivity analysis was conducted to assess
the amount of error imparted to the LE estimates by RS-ET
given two error levels, low and high, spanning the range in

Table 3. Comparisons of the RS-ET Estimated 8-Day Latent Heat Flux Derived Using Daily Surface Meteorological Inputs From Tower,

AMSR-E, and GMAO With Observationsa

Site Mean RMSE1 RE1 R1 MR1 S1 I1 RMSE2 RE2 R2 MR2 S2 I2 RMSE3 RE3 R3 MR3 S3 I3

BRW1 27.31 11.1 40.7 0.53 �7.9 0.6 5.4 8.2 29.8 0.45 �5.4 0.4 10.4 7.1 25.8 0.51 �4.2 0.2 16.9
BRW2 37.40 7.7 20.7 0.94 �5.3 0.7 6.2 10.6 28.5 0.88 �8.0 0.5 9.9 14.6 39.0 0.90 �12.7 0.3 9.1
ATQ 32.11 9.8 30.5 0.68 �3.9 0.4 12.6 13.6 42.3 0.44 �8.0 0.3 14.6 11.1 34.5 0.51 �2.0 0.05 23.6
NOBS 64.40 32.4 50.3 0.60 18.1 1.0 9.5 24.1 37.4 0.74 9.5 0.7 28.5 28.6 44.4 0.75 12.5 1.0 7.1
OAS 79.53 27.2 34.2 0.81 7.8 0.9 9.2 24.7 31.1 0.84 6.6 0.7 24.5 28.1 35.3 0.85 13.4 0.9 11.9
LTH 81.23 64.8 79.7 0.86 �51.1 0.2 6.4 64.3 79.1 0.83 �50.1 0.2 12.2 61.5 75.7 0.85 �46. 9 0.2 11.5
Average 62.10 14.3 0.62 �5.3 13.0 0.66 �7.8 14.8 0.67 �4.2

aRoot Mean Square Error (RMSE), relative error (RE = RMSE/mean LE, %), mean residual (MR = Estimate � Observation), and correlation coefficient
(R) between tower observations and RS-ET results for the six tower sites. Slopes (S) and intercepts (I) of the daily latent heat flux (W m�2) versus daily
latent heat flux (W m�2) observations for the six tower sites. The RS-ET results are derived using daily surface meteorological inputs from three alternate
sources: (1) tower, (2) AMSR-E, and (3) GMAO.

Figure 6. (a) Root-mean-square error (RMSE, W m�2)
and (b) relative error (RMSE/mean LE, %) between tower
observed and model estimated mean 8-day latent energy
fluxes derived from the three alternate sets of meteorolo-
gical data inputs.
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input temperatures (Tmin and Tmax) and net incoming solar
radiation (Rsn). The two error levels give RS-ET accuracies
for LE in accordance with the meteorological drivers
reported from pixel to point site comparisons in section 4.1
and reported by Jones et al. [2007]and Zhao et al. [2006].
The low error scenario considered equal error of 2�C in both
Tmin/Tmax and error of 50 W m�2 in Rsn. The high error
scenario considered equal error of 4�C in both Tmin/Tmax
and error of 90 W m�2 in Rsn. Model input parameters for
the sensitivity analysis included leaf area index, Rsn, and
Tdew, ranging from 1 to 5 m2 m�2, 100 to 400 W m�2, and
0 to 20�C, respectively. The Tmax values ranged between
Tdew and 35�C and produced VPD values between 0 to
2.8 kPa. Soil evaporation was considered negligible and
LE was dominated by the vegetation component, while
values for stomatal control were fixed for grasslands [Mu
et al., 2007b, Table 1]. Errors were assumed independent
between Rsn, Tmin, and Tmax. Owing to the complex
model dependence on temperature, error propagation was
calculated in steps, where errors were assumed independent
between different steps. This assumption of error indepen-
dence represents a potential source of bias in the analysis,

though several temperature dependencies in the model have
low characteristic variability, including air density, surface
emissivity and the psychrometric constant.
[30] An estimated 2�C error in RS-ET temperature inputs

resulted in a 7.3 W m�2 error in model derived LE under the
low error scenario, whereas model LE error was 34.9 W
m�2 under the high error scenario. Rsn error in the low error
scenario (50 W m�2) alone resulted in 1.5 W m�2 error in
LE, whereas model LE error was 17.5 W m�2 under the
high error scenario (90 W m�2). The sensitivity of the
model to error in incoming solar radiation is strongly
reduced by surface resistance and therefore the lower bound
is below the error sensitivity that would be expected for
potential evaporation conditions, where radiation is the
primary driver of evaporation. When errors in LE estimates
from both Tmin/Tmax and Rsn sources were considered, LE
error ranged from 7.4 W m�2 (Relative Error RE = 34%) to
38.2 W m�2 (RE = 16%) for the low error level scenario for
VPD > 0.5 kPa. For the high error level scenario, estimated
LE error ranged from 14.9Wm�2 (RE = 68%) to 75.1Wm�2

(31%) for VPD > 0.5 kPa. Thus meaningful (RE < 100%)
LE information can be derived when VPD > 0.04 kPa for

Figure 7. Comparison of input MODIS leaf area index, enhanced vegetation index, and GMAO
minimum temperature (Tmin), daytime average temperature (Tday), vapor pressure deficit, and net
incoming radiation at LTH and NOBS.
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the low error scenario and when VPD > 0.08 kPa for the
high error scenario.
[31] Given a constant error in Tday, the absolute error in

LE estimates from Tmin/Tmax and Rsn sources increases
linearly with the magnitude of the LE flux when LE is
above a threshold of approximately 15 W m�2, while
relative LE error is relatively consistent with a small decline
(Figure 8). Given a constant error in Tday, the error in LE
increases with VPD to a maximum at 	1.5 kPa and then
declines as a result of stress related reductions in canopy
conductance (Figure 8). The increasing slope of the satura-
tion vapor pressure curve with temperature also imparts
relatively more error to LE for higher temperatures relative
to lower temperatures at equivalent VPD. The greatest
absolute error in LE therefore occurs when LE is high
under high LAI, high Rsn, and low VPD, whereas the
greatest relative error occurs when LE is low.
[32] The results of the RS-ET model error analysis

indicate that meaningful LE information can be derived
given observed accuracies in meteorological drivers when
LE > 7–26 W m�2 (ET > 0.13–1.33 mm d�1) depending
on model and satellite sensor retrieval error. Analytically
estimated propagated errors are in accord with errors
observed in comparisons with observed data (Figure 6 and
section 4.3). Correlation of errors in the real data sets and
calculation of model parameters from temperature may
increase propagated LE errors above those presented, how-
ever correlation between Rsn and air temperatures from
independent sources and parameter variability is expected to
be low. A 2�C error in temperature inputs influences RS-ET
derived ET 2–5 times more than does an error of 50 W m�2

in net incoming solar radiation. The accuracy of the mete-
orological drivers contributes 28 to 65 percent of the overall
error in RS-ET estimates of LE and translates to relative
error in cumulative ET of approximately 2.8 to 6.5 percent
over a 100-day growing season.
[33] The RS-ET algorithm is designed for regular global

mapping of ET using satellite remote sensing information
from MODIS and GMAO surface meteorology as primary
inputs, so the RS-ET model was parameterized using global
GMAO data [Zhao et al., 2005; Mu et al., 2007b]. Although

model representation contributes relatively more error to
estimated fluxes than the meteorological inputs, relatively
improved RS-ET accuracies were obtained using GMAO
and AMSR-E inputs in relation to tower meteorological
inputs for some sites. Similar results were also obtained
from a regional comparison of MODIS (MOD17A2) and
tower derived CO2 (GPP) fluxes across a larger North
American network of 15 AmeriFlux sites [Heinsch et al.,
2006]. The MODIS MOD17A2 algorithm uses the same
GMAO surface meteorology as the RS-ET algorithm. The
arithmetic mean difference between GMAO- and tower
meteorology–based GPP was 28 (±45) percent, indicating
that the GMAO meteorology strongly influences model
accuracy and that this influence varies from site to site
depending on land cover and climate conditions.

4.4. Implementing the RS-ET Algorithm Over the
Pan-Arctic Domain

[34] The mean (2000–2006) annual ET pattern for the
pan-Arctic domain as derived from MODIS and GMAO
meteorological inputs is presented in Figure 9. The area-
weighted average ET in this region was calculated for each
MODIS UMD land cover type (Table 4). These results show
large ET variability among the regional biomes. The largest
annual ET rates occur over forests, while the lowest rates
occur over grasslands and shrublands; annual ET rates for
savanna and cropland areas are generally intermediate
(Figure 9 and Table 4). Ecosystem processes in high-latitude
boreal and tundra biomes are strongly constrained by low
solar irradiance and freezing temperatures for much of the
year so that seasonal patterns in plant photosynthesis (GPP)

Figure 8. Absolute error (solid black lines; W m�2) and
relative error (dashed gray lines; %) propagated to RS-ET
estimates of latent energy flux for three levels of error in
remotely sensed temperatures. Leaf area index, dew point
temperature, net incoming solar radiation, and error in net
incoming solar radiation are held at constant, moderate
values of 3 m2 m�2, 0�C, 300 W m�2, and 70 W m�2,
respectively. Tmax varies from 0� to 30�C. Soil evaporation
is considered negligible.

Figure 9. Spatial pattern of model-derived mean annual
ET for the pan-Arctic domain obtained using GMAO daily
meteorological inputs for the 2000–2006 period. Areas
classified by the MODIS global land cover map as open
water, ice, and unvegetated are shown in white and were
masked from the analysis.
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and ET correspond closely and are generally confined to a
relatively narrow growing season [Jarvis, 1976; McMurtrie
et al., 1992; Farquhar et al., 2002; Hari et al., 1986;
Nemani et al., 2003]. As a result, the general spatial patterns
of ET (Figure 9) and GPP [Zhao et al., 2005, Figure 7a] are
similar within the pan-Arctic domain; forested areas show
both high ET and GPP rates, while lower rates occur in
grasslands.
[35] Pan-Arctic spatial and seasonal variability was much

larger than interannual variability in estimated annual ET;
annual ET variability for the 2000–2006 period was
generally less than 10% of mean annual ET (Table 4). This
relatively low variability reflects the dominance of cold
temperature constraints on boreal Arctic ecosystem pro-
cesses, whereas variability in ecosystem processes and
ET is more substantial at lower latitudes and is linked to the
increasing importance of plant-available moisture supply
[Nemani et al., 2003]. While interannual variability in ET
was small, the model results generally showed a large
seasonal range of mean monthly ET across the pan-Arctic
domain (Figure 10). Mean monthly ET rates increase
markedly from winter (DJF) dormancy conditions to spring
(MAM) with plentiful solar radiation, seasonal thawing and
rising air temperatures and LAI. ET rates are highest in
summer (JJA) when seasonal canopy cover indicated by
MODIS LAI and EVI inputs is maximized and available
solar radiation and seasonal air temperatures are generally
optimal for photosynthesis and canopy conductance. Vege-
tation canopy senescence and decreasing air temperatures
and solar energy in the fall (SON) reduce mean monthly ET
rates to approximately 81.7% of summer conditions. With
predominantly freezing temperatures and near-zero solar
irradiance in winter (DJF), plants become dormant and ET
is nearly zero.

4.5. Discussion

[36] Results of the model comparisons for the six boreal-
Arctic tower sites from this investigation showed no major

differences in modeled ET results produced from the three
alternate sets of meteorology inputs despite large spatial and
seasonal variability in surface meteorological conditions
and estimated ET rates across the pan-Arctic domain and
regional tower observation network. The RMSE and mean
biases of the GMAO- and AMSR-E-based ET estimates
were generally small and corresponded strongly with each
other and with associated tower observations. The RS-ET
model parameters are the same as those used in the global
MODIS primary production algorithm [Zhao et al., 2005].
These parameters have been previously calibrated using
GMAO meteorology inputs and a global distribution of
tower-based meteorological observations [Zhao et al., 2005;
Mu et al., 2007b], which may explain the relatively low
mean residual LE error produced from GMAO inputs
relative to results from AMSR-E- and tower-based meteo-
rological inputs. The relatively coarse resolution GMAO
meteorology also has dampened daily variability as com-
pared to the AMSR-E and tower daily meteorology. How-
ever, the lower RMSE values of the AMSR-E-based RS-ET
results indicate that the AMSR-E-based daily air tempera-
ture and VPD information is generally consistent with tower
observations and provides a viable alternative to GMAO
meteorological inputs for ET estimation over boreal Arctic
regions.
[37] The analysis presented in section 4.1 indicates some

model uncertainty due to spatial scale differences between
tower observations and GMAO and AMSR-E meteorology
inputs. However, point to pixel comparisons between tower
observations and model inputs varied by less than 3.40�C
for temperature, less than 0.4 kPa for VPD, and less than
88.1 W m�2 for radiation. Error in model LE results
between the three input meteorology data sets was less

Table 4. Area-Weighted Average Annual ET and the Relative

Proportion of the Standard Deviation of Annual Fluxes to Average

Annual ET for Each UMD LC in the Pan-Arctic Region Over the

2000–2006 Perioda

UMD LC Number
ET

(mm yr�1)
Standard Deviation

to ET (%)

ENF 170283 300 6.60
EBF 2052 596 3.86
DNF 33474 294 6.08
DBF 15592 449 3.80
MF 169445 369 4.49
CSH 330 224 6.46
OSH 323244 163 11.27
WSV 60813 250 7.59
SV 7197 342 4.97
GRS 168485 136 8.45
CRP 256714 256 5.23

aET, evapotranspiration; UMD LC, MODIS land cover class; Number,
number of pixels in the pan-Arctic region with that vegetation type; ENF,
evergreen needleleaf coniferous forest; EBF, evergreen broadleaf forest;
DNF, deciduous needleleaf coniferous forest; DBF, deciduous broadleaf
forest; MF, mixed evergreen and deciduous forest; CSH, closed shrublands;
OSH, open shrublands; WSV, woody savannas; SV, savanna; GRS,
grassland; CRP, cropland.

Figure 10. The mean (2000–2006) seasonality of regional
ET for the pan-Arctic domain as derived from the RS-ET
algorithm and GMAO meteorology. Masked areas are
shown in white.
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than 8.3 W m�2 for all locations, and represented between
2.8–18.3% of the mean RMSE for each location. These
results indicate that uncertainties in meteorological inputs
have only a minor impact on RS-ET algorithm accuracy
for the six boreal Arctic study sites. Tower instrument
error and associated data dropout produce differences of
approximately 20% when towers are intercalibrated at
the same site [Baldocchi et al., 2001; Baldocchi, 2003;
Shuttleworth, 2007]. This indicates potential observational
error of 10 to 40 W m�2 for yearly average LE fluxes from
50 to 200 W m�2. The remaining model error can be
attributed to deviations in algorithm assumptions and
MODIS LAI/EVI inputs from local tower conditions.
[38] 1. Input data to the RS-ET algorithm. There are

documented biases in model inputs from both GMAO and
MODIS data when compared to observations [Heinsch et
al., 2006]. Overestimates of LAI by MODIS [Heinsch et al.,
2006; Wang et al., 2004] may result in overestimates of LE
even if other inputs such as daily meteorology and MODIS
EVI data are relatively accurate. Although the temporal
filling of unreliable MODIS data, including LAI, EVI and
albedo, greatly improves the accuracy of model inputs, the
filled values are artificial and therefore contain uncertain-
ties. The RS-ET estimate is very sensitive to fractional
vegetation cover, and inaccuracy in MODIS EVI will lead
to miscalculation of Fc, and hence LE. By setting Fc to 1.0,
the magnitude of LE estimates decreases at the three grass
tower sites ATQ, BRW1 and BRW2, but increases at the
forest sites NOBS and OAS. LE RMSE and associated
model biases increase substantially by setting Fc to 1.0 at
these five sites. At LTH, the magnitude of estimated LE
increases but is still much lower than tower LE observa-
tions; LE RMSE and biases at LTH decrease with Fc = 1,
but are still much higher than those at the other five sites
with Fc calculated from EVI. All of these input uncertainties
can introduce biases in LE (ET) estimates that are difficult
to detect.
[39] 2. Missing observation data. To facilitate compari-

sons between RS-ET results and tower observations, we
only analyzed days having complete data series from tower
LE observations, and tower, GMAO and AMSR-E derived
meteorology inputs. For each tower and each year, there
were fewer than 200 days with available data, most of
which occurred during the growing seasons. The tower
latent heat flux and meteorological data is typically reported
at half-hourly intervals. For these available daily observa-
tions, there were, on average, fewer than 15 measurements
per day. Using so few observation samples to obtain
estimates of daily meteorology or a daily average of LE
can lead to errors in the analysis [Desai et al., 2005].
However, we chose not to use gap-filled data because
gap-filling methods have been tested on net ecosystem
exchange of CO2 and not ET, limiting our ability to assess
reliability.
[40] 3. Errors in eddy covariance tower LE observations.

Two types of towers have been widely employed: Bowen
Ratio Energy Balance (BREB) and eddy covariance (EC)
towers. Flux measurements are subject to several sources of
error [Glenn et al., 2008]. They are point measurements, but
they require a uniform fetch of vegetation of several
thousand square meters (e.g., 50 m � 50 m) around the
towers to produce results that are representative of a

particular ecosystem, and these conditions are often not
perfectly met in natural landscapes. Instrument error and
data dropout introduce errors of about 20% when different
towers are intercalibrated at the same site [Baldocchi et al.,
2001; Baldocchi, 2003; Shuttleworth, 2007]. Furthermore,
EC moisture flux estimates are often 10–30% lower than
energy closure (BREB) results. EC results are often increased
to account for this ‘‘closure error’’ [Twine et al., 2000], but
the best way to achieve closure and the cause of the closure
error are still unclear [Shuttleworth, 2007]. LE observations
from eddy covariance may therefore be biased as a result of
energy balance closure error.
[41] 4. Scaling from tower to landscape. The size of the

flux tower footprint is largely influenced by tower height
and local environmental conditions [Cohen et al., 2003;
Turner et al., 2003a, 2003b]. The RS-ET input data are
representative of different spatial resolutions which may
introduce uncertainties across the six study sites due to
differences in tower footprints for different towers and under
varying environmental conditions for a given tower. The
GMAO meteorology at 1 � 1.25 degree and the 60 km �
60 km AMSR-E meteorology are much coarser than the
1-km MODIS EVI and LAI input data. Previous modeling
studies of land cover spatial scale effects on estimated ET
fluxes indicate that ET is relatively insensitive to land cover
spatial scale in relatively moist boreal environments, with
an average bias of less than 5% between regional model
estimates consistent with satellite observations and tower
observed fluxes [Kimball and Running, 1999].
[42] 5. Algorithm limitations. Model assumptions con-

tribute to the observed differences between RS-ET and
tower observed fluxes. First, the RS-ET algorithm assumes
that net incoming radiation and VPD are negligible at night
(day length is calculated in the RS-ET model, which can be
24 h long in summer in the polar arctic), which results in no
estimated nighttime LE flux. However, outgoing longwave
radiation is not negligible at night, and nighttime air
temperatures may not attain saturation (i.e., nonnegligible
VPD). The assumption of a negligible ground heat flux (G)
on a daily basis [Gavilána et al., 2007] may cause some
errors in the Arctic boreal regions, where G accounts for
10–15% of net solar radiation for melting ice in the active
layer, especially early in the growing season [Harazono et
al., 1995; Engstrom et al., 2006]. In the Arctic boreal
regions, the observed G at four of the six studied towers
shows that, for most of the time especially in summer, G
counts to less than 20% of the net incoming solar radiation
(not shown). Jacobsen and Hansen [1996] have established
some methods to estimate G using the surface temperature
or some vegetation index. In our future improvements, we
will refer to their method to estimate the ground heat fluxes
to make the ET estimates more accurate. MODIS ET
algorithm was developed to estimate global ET. It remains
a significant challenge to estimate the ground heat flux at
different climate regimes and vegetation types. The potential
stomatal conductance per unit leaf area (cL in equation (A2))
was taken as a constant. It actually varies with different
vegetation types. Leuning et al. [2008] indicate that this key
parameter in the Penman-Monteith equation varies clearly
in the fifteen global ecosystems. Another limitation of this
algorithm is that it does not consider water balance con-
strains, resulting in significant errors in mean annual remote

W09420 MU ET AL.: SATELLITE ASSESSMENT OF LAND SURFACE ET

15 of 20

W09420



sense evaporation in semiarid and arid regions [Zhang et al.,
2008], e.g., mean annual remotely sensed evaporation
higher than mean annual rainfall. The limitations of these
assumptions will introduce biases and errors in the ET
estimates. Future improvements in the RS-ET model should
consider biome-specific variability in ground heat flux. Also
model biophysical parameters, such as the critical VPD
values when stomata are completely inhibited (VPD_close)
or under no water stress (VPD_open) are used as constant
parameters within a given biome type as defined from a
global land cover classification. However, for different
species within the same biome type, the differences in these
parameters can be large [Turner et al., 2003a, 2003b]. In
addition, the RS-ET model treats nonvegetated areas as a
uniform evaporating surface. For example, the BRW and
ATQ sites contained 87% and 12% respective open water
coverage [Jones, 2007]. The large ocean component at the
BRW and ATQ site windows reduced vegetation fractional
cover derived from the EVI [Mu et al., 2007b], making
surface evaporation the primary component of estimated
ET. Consequently, plant transpiration is only a small part of
estimated ET for the BRW and ATQ sites. The ocean and
other open water bodies are also treated as a soil surface by
the model, even though evaporation over water is charac-
teristically much higher than over soil. As a result, model
ET rates are generally smaller than tower observations for
the BRW and ATQ sites (Table 3). Further study is needed
to improve RS-ET algorithm performance particularly
where vegetation cover is less extensive and evaporation
from open water and other nonvegetated surfaces represents
a larger component of ET.

5. Conclusion

[43] The satellite-based RS-ET algorithm produced large
spatial and seasonal variability in annual ET rates
corresponding with regional land cover and strong season-
ality in available solar radiation, temperature and plant
growth. Spatial variability in model derived annual ET
was generally consistent with satellite-based regional pro-
ductivity (GPP) patterns and showed relatively small vari-
ability in annual ET over the 2000–2006 study period; this
was attributed to strong cold temperature constraints on
ecosystem processes, relatively short growing seasons and
large seasonal ranges in solar radiation, vegetation canopy
and temperature conditions regulating land-atmosphere
water and trace gas exchange for the domain. The RS-ET
model results derived from the three alternate meteorology
data sets agreed well with tower observed latent heat fluxes
(r > 0.7; P < 0.003; RMSE < 30 W m�2) and captured
regional ET patterns and daily, seasonal and interannual
variability in ET across the six tower sites representing
relatively diverse boreal Arctic land cover and climate
conditions. The MODIS-AMSR-E derived ET results also
showed comparable accuracy to ET results derived from
GMAO reanalysis meteorology, while ET estimation error
was generally more a function of algorithm parameterization
than differences in meteorology drivers. Uncertainty in daily
meteorological inputs contributed from 28 to 65 percent of
the overall error in RS-ET estimates of LE and corresponds
to relative error in cumulative ET of approximately 2.8 to
6.5 percent over a 100-day growing season. These results
are within the range of accuracy for tower-based ET

measurements and indicate significant potential for regional
mapping and monitoring of daily land surface evaporation
using synergistic information from satellite optical IR and
microwave remote sensing.

Appendix A: ET Algorithm Logic

[44] The RS-ET was developed to estimate global ET by
considering both the surface energy partitioning process and
environmental constraints on ET based on Cleugh et al.’s
[2007] Penman-Monteith-based ET:

lE ¼ sAþ rCp esat � eð Þ=ra
sþ g 1þ rs=rað Þ ðA1Þ

where lE (W m�2) is the latent heat flux and l (J kg�1) is
the latent heat of evaporation; s = d(esat)/dT (Pa K�1) and is
the slope of the curve relating saturated water vapor
pressure (esat: Pa) to temperature; A (W m�2) is available
energy; r (Kg m�3) is air density; Cp (J kg�1 K�1) is the
specific heat capacity of air; e (Pa) is the actual water vapor
pressure; and ra (s m�1) is the aerodynamic resistance.
The psychrometric constant g (Pa K�1) is given by g =
(Ma/Mw)(CpP/l), where Ma (kg mol�1) and Mw (kg mol�1)
are the molecular masses of dry air and wet air, respectively,
and P (Pa) is atmospheric pressure [Maidment, 1993].
Surface resistance (rs: s m�1) is an effective resistance to
evaporation from the soil surface and transpiration from the
plant canopy. Input data to the algorithm include daily
meteorology (temperature, actual vapor pressure, and
incoming solar radiation) and remotely sensed LAI and
NDVI. In addition, this algorithm is computed daily to take
advantage of widely available daily meteorology, over-
coming the obstacle of using the 8-day MODIS LST data.

A1. Calculation of Canopy Conductance

[45] In RS-ET, surface conductance (CC) is estimated by
using LAI as a scalar to convert the stomatal conductance
(Cs) calculated at the leaf level to a canopy conductance
(Cc) [Landsberg and Gower, 1997]:

CS ¼ cL � m T minð Þ � m VPDð Þ
Cc ¼ Cs� LAI

ðA2Þ

where cL is the mean potential stomatal conductance per
unit leaf area, m(Tmin) is a multiplier that limits potential
stomatal conductance by minimum air temperatures (Tmin),
and m(VPD) is a multiplier used to reduce the potential
stomatal conductance when VPD is high enough to inhibit
photosynthesis. In the case of plant transpiration, surface
conductance (gs) is equal to the canopy conductance, and
hence surface resistance (rs) is the inverse of canopy
conductance (CC). The LAI in equation (A2) is obtained
from the global 8-day standard MODIS LAI product, which
is estimated using a canopy radiation transfer model
combined with remotely sensed surface reflectance data
[Myneni et al., 2002].

A2. Calculation of Vegetation Cover Fraction

[46] Vegetation cover fraction (FC) is defined as the
fraction of ground surface covered by the maximum extent
of the vegetation canopy (varies between 0 and 1). In the
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RS-ET algorithm, vegetation cover fraction is calculated by
using EVI as

FC ¼ EVI � EVImin

EVImax � EVImin

ðA3Þ

where EVImin and EVImax are the signals from bare soil
(LAI ! 0) and dense green vegetation (LAI ! 1)
[Gutman and Ignatov, 1998], which are set as seasonally
and geographically invariant constants 0.05 and 0.95,
respectively. When Fc is bigger than 1, Fc is 1, and when
Fc is less than 0, Fc is 0. We have done several sensitivity
experiments, setting (EVImin, EVImax) as (0.01, 0.99), (0.05,
0.92), (0.11, 0.92) and (�0.5, 0.99), respectively. There is
not much difference between the root mean square error
(less than 1.0 W m�22), bias (about 3.0 W m�22) and
correlation coefficient (less than 0.01) from different
sensitivity experiments.
[47] Net radiation is linearly partitioned between the

canopy and the soil surface using this vegetation cover
fraction (FC) such that

AC ¼ FC � A

ASOIL ¼ 1� FCð Þ � A
ðA4Þ

where AC and ASOIL are the total net incoming radiation (A)
partitioned to the canopy and soil, respectively.

A3. Soil Evaporation

[48] To calculate soil evaporation, the potential evapora-
tion (lESOIL_POT) is first calculated using the Penman-
Monteith equation (equation (A1)). The total aerodynamic
resistance to vapor transport (rtot) is the sum of surface
resistance (rs) and the aerodynamic resistance for vapor
transport (rv) such that rtot = rv + rs [van de Griend, 1994].
A constant rtotc (107 s m�1) for rtot is assumed globally on
the basis of observations of the ground surface in tiger-bush
in southwest Niger [Wallace and Holwill, 1997], but it is
corrected (rcorr) for atmospheric temperature (T) and pres-
sure (P) [Jones, 1992] with standard conditions assumed to
be T = 20�C and P = 101300 Pa:

rcorr ¼ 1:0

273:15þ T

293:15

� �1:75

� 101300

Pa

rtot ¼ rtotc � rcorr ¼ rv þ rs

rtotc ¼ 107:0

ðA5Þ

[49] We assume that rv (s m�1) is equal to the aerody-
namic resistance (ra: s m�1) from equation (A1) since the
values of rv and ra are usually very close [van de Griend,
1994]. The aerodynamic resistance (ra) is parallel to both
the resistance to convective heat transfer (rc: s m

�1) and the
resistance to radiative heat transfer (rr: s m

�1) [Choudhury
and DiGirolamo, 1998], such that

rr ¼
r� CP

4:0� s � T3

ra ¼
rc � rr

rc þ rr

ðA6Þ

The rc is assumed to be equal to boundary layer resistance,
which is calculated in the same way as total aerodynamic
resistance (rtot) from equation (A5) [Thornton, 1998].
Finally, the actual soil evaporation (lESOIL) is calculated
in equation (A5) using potential soil evaporation
(lESOIL_POT) and the complementary relationship hypoth-
esis [Bouchet, 1963; Fisher et al., 2008], which defines
land-atmosphere interactions from vapor pressure deficit
and relative humidity (RH, %):

lESOIL POT ¼ sASOIL þ rCp esat � eð Þ=ra

sþ g � 1þ rs

ra

� �

¼ sASOIL þ rCp esat � eð Þ=ra
sþ g � rtot

ra

lESOIL ¼ lESOIL POT � RH

100

� � esat�eð Þ=100

ðA7Þ

[50] The value of 50 s m�1 was chosen as the lower
bound because it is very close to the mean boundary layer
resistance for vegetation under semiarid conditions, and
there is little variation around this mean [van de Griend,
1994]. Finally, the latent heat flux for the ecosystem is
calculated as the sum of the transpiration (equation (A1))
and the soil evaporation (equation (A7)).
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