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Abstract

The objective of this research is to develop a global remote sensing evapotranspiration (ET) algorithm based on Cleugh et al.'s [Cleugh, H.A., R.
Leuning, Q. Mu, S.W. Running (2007) Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sensing of Environment
106, page 285–304- 2007 (doi: 10.1016/j.rse.2006.07.007).] Penman–Monteith based ET (RS-PM). Our algorithm considers both the surface energy
partitioning process and environmental constraints on ET. We use ground-based meteorological observations and remote sensing data from the
MODerate Resolution Imaging Spectroradiometer (MODIS) to estimate global ET by (1) adding vapor pressure deficit and minimum air temperature
constraints on stomatal conductance; (2) using leaf area index as a scalar for estimating canopy conductance; (3) replacing the Normalized Difference
Vegetation Index with the Enhanced Vegetation Index thereby also changing the equation for calculation of the vegetation cover fraction (FC); and
(4) adding a calculation of soil evaporation to the previously proposed RS-PM method.

We evaluate our algorithm using ETobservations at 19 AmeriFlux eddy covariance flux towers. We calculated ETwith both our Revised RS-PM
algorithm and the RS-PM algorithm using Global Modeling and Assimilation Office (GMAO v. 4.0.0) meteorological data and compared the
resulting ET estimates with observations. Results indicate that our Revised RS-PM algorithm substantially reduces the root mean square error
(RMSE) of the 8-day latent heat flux (LE) averaged over the 19 towers from 64.6 W/m2 (RS-PM algorithm) to 27.3 W/m2 (Revised RS-PM) with
tower meteorological data, and from 71.9 W/m2 to 29.5 W/m2 with GMAO meteorological data. The average LE bias of the tower-driven LE
estimates to the LE observations changed from 39.9W/m2 to −5.8W/m2 and from 48.2W/m2 to −1.3W/m2 driven by GMAO data. The correlation
coefficients increased slightly from 0.70 to 0.76 with the use of tower meteorological data. We then apply our Revised RS-PM algorithm to the globe
using 0.05° MODIS remote sensing data and reanalysis meteorological data to obtain the annual global ET (MODIS ET) for 2001. As expected, the
spatial pattern of theMODIS ETagrees well with that of theMODIS global terrestrial gross and net primary production (MOD17GPP/NPP), with the
highest ET over tropical forests and the lowest ET values in dry areas with short growing seasons. This MODIS ET product provides critical
information on the regional and global water cycle and resulting environment changes.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Evapotranspiration (ET), the sum of water lost to the atmo-
sphere from the soil surface through evaporation and from plant
tissues via transpiration, is a vital component of the water cycle,
which includes precipitation, runoff, streamflow, soil water
storage and ET. High correlation was observed between stomatal
conductance and the rate of carbon assimilation for a wide range
of plant species (Korner, 1994;McMurtrie et al., 1992). Stomatal
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conductance controls the rate of water and carbon exchange
between vegetation and the atmosphere (Cowan, 1977; Cowan
& Farquhar, 1977; Farquhar et al., 2002; Hari et al., 1986). In
general, high stomatal conductance leads to high transpiration
and high photosynthesis, resulting in lowering of soil moisture
assuming there are no additional inputs of water, which in turn
reduces the stomatal conductance (Dang et al., 1997; Jarvis, 1976;
Kawamitsu et al., 1993;Marsden et al., 1996; Misson et al., 2004;
Oren et al., 1999; Sandford & Jarvis, 1986). Over a relatively long
time period (i.e., a season or a year), the water available for
humans and ecosystems in a given region can be approximated by
the difference between accumulated precipitation and ET

mailto:qiaozhen@ntsg.umt.edu
http://dx.doi.org/10.1016/j.rse.2007.04.015


520 Q. Mu et al. / Remote Sensing of Environment 111 (2007) 519–536
(Donohue et al., 2007).With an increasing human population and
rapid climate change, water has become a great concern both for
the environment and society. Accurate knowledge of temporal
and spatial variations in precipitation and ET is critical for
improved understanding of the interactions between land surfaces
and the atmosphere, and it is crucial for improving water and land
resource management (Dodds et al., 2005; Meyer, 1999;
Raupach, 2001), drought detection and assessment (McVicar &
Jupp, 1998), and regional hydrological applications (Keane et al.,
2002; Kustas & Norman, 1996; Rango & Shalaby, 1998).
However, precipitation and ET are the most problematic
components of the water cycle to estimate accurately because of
the heterogeneity of the landscape and the large number of
controlling factors involved, including climate, plant biophysics,
soil properties, and topography (Friedl, 1996; Gash, 1987;
Janowiak et al., 1998; Maddock et al., 1998; Vörösmarty et al.,
1998; http://dx.doi.org/10.1016/j.jhydrol.2007.02.018). Remote-
ly sensed data, especially those from polar-orbiting satellites,
provide us with temporally and spatially continuous information
over vegetated surfaces and are useful for accurately parameter-
izing surface biophysical variables, such as albedo, biome type
and leaf area index (LAI) (Los et al., 2000). The MODerate
Resolution Imaging Spectroradiometer (MODIS) onboard
NASA's Terra and Aqua satellites, provide unprecedented
information regarding vegetation and surface energy (Justice
et al., 2002), which can be used to develop a remotely sensed ET
model.

Calculation of ET is typically based on the conservation of
either energy or mass, or both. Computing ET is a combination
of two complicated major issues: (1) estimating the stomatal
conductance to derive transpiration from plant surfaces; and
(2) estimating evaporation from the ground surface. Plant tran-
spiration is controlled by canopy conductance, which further
represents the average status of leaf level stomatal conductance.
Stomatal conductance is sensitive to diurnal changes in absorbed
photosynthetically active radiation (APAR=FPAR⁎ IPAR,
IPAR=0.45⁎Rsw, Rsw: the incident shortwave radiation; IPAR:
the photosynthetically active radiation incident on the vegetative
surface; FPAR: the fraction of IPAR absorbed by the vegetative
surface), vapor pressure deficit, leaf temperature, hydraulic con-
ductance within the plant, and soil moisture near the roots (Dang
et al., 1997; Jarvis, 1976; Kawamitsu et al., 1993; Marsden et al.,
1996; Misson et al., 2004; Oren et al., 1999; Sandford & Jarvis,
1986). Therefore, a fluctuation in stomatal conductance usually
leads to a commensurately large fluctuation in transpiration, and
hence, ET. In semiarid or arid systems, soil evaporation is a major
component of ET, yet little is known quantitatively about it over
large spatial scales. Soil evaporation is reported to range from a
few percent to more than 80% of the measured or estimated total
ET depending on the vegetation cover (Bethenod et al., 2000;
Hsiao & Xu, 2005; Villalobos & Fereres, 1990; Wilson et al.,
2000).

As a result, developing a robust algorithm to estimate global
evapotranspiration is a significant challenge. Traditional energy
balance models of ET require explicit characterization of nu-
merous physical parameters, many of which are difficult to
determine globally. For example, SEBAL (Bastiaanssen et al.,
1998a,b), SEBS (Su, 2002), and RSEB (Kalma & Jupp, 1990)
estimate ET as a residual of the energy balance at the earth's
surface, which contain biases from both the sensible heat flux
and net radiation. The REBM model (McVicar & Jupp, 1999,
2002) uses combined remote sensing data and meteorologi-
cal data to calculate ET, while the triangle method (Gillies &
Carlson, 1995; Nemani & Running, 1989; Nishida & Nemani,
2003) uses the slope of surface temperature versus the Nor-
malized Difference Vegetation Index (NDVI) to estimate the
surface resistance to ET, and the dual-source model developed
by Norman et al. (1995) and Kustas and Norman (1999) uses
multi-angular remote sensing. For these models, thermal remote
sensing data (e.g., land surface temperature [LST]) are the most
important inputs.

However, using the 8-day composite MODIS LST (the aver-
age LSTof all cloud-free data in the compositing window) (Wan
et al., 2002) and daily meteorological data recorded at the flux
tower, Cleugh et al. (2007) demonstrate that the results from
thermal models are unreliable at two Australian sites (Virginia
Park, a wet/dry tropical savanna located in northern Queensland
and Tumbarumba, a cool temperate, broadleaved forest in south
east New South Wales). Using a combination of remote sensing
and global meteorological data, we have adapted the Cleugh
et al. (2007) algorithm, which is based on the Penman–Monteith
method and calculates both canopy conductance and ET. In this
paper, we describe the methodology used to develop the ET
algorithm, verify the algorithm at 19 AmeriFlux towers in 2001,
and apply the algorithm globally.

2. ET algorithm logic

Our ET algorithm is a revision to the algorithm proposed by
Cleugh et al. (2007) (hereafter called RS-PM). Their algorithm
is based on the Penman–Monteith (P–M) equation (Monteith,
1964):

kE ¼ sAþ qCpðesat � eÞ=ra
sþ gð1þ rs=raÞ ð1Þ

where λE (unit: W/m2) is the latent heat flux and λ (J/kg) is the
latent heat of evaporation; s=d(esat) /dT (unit: Pa/K) and is
the slope of the curve relating saturated water vapor pressure
(esat: Pa) to temperature; A (W/m2) is available energy; ρ (kg/m3)
is air density;Cp (J/kg/K) is the specific heat capacity of air; e (Pa)
is the actual water vapor pressure; and ra (s/m) is the aerodynamic
resistance. The psychrometric constant γ(Pa/K) is given by γ=
(Ma /Mw)(CpP/λ), where Ma (kg/mol) and Mw (kg/mol) are the
molecular masses of dry air and wet air, respectively, and P (Pa)
is atmospheric pressure (Maidment, 1993). Surface resistance
(rs: s/m) is an effective resistance to evaporation from the soil
surface and transpiration from the plant canopy. Input data to the
algorithm include daily meteorology (temperature, actual vapor
pressure, and incoming solar radiation) and remotely sensed LAI
and NDVI. In addition, this algorithm is computed daily to take
advantage of widely available daily meteorology, overcoming the
obstacle of using the 8-dayMODISLSTdata. Cleugh et al. (2007)
verified the RS-PM algorithm at the same two flux towers in
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Australia with good agreement (root mean square error [RMSE]=
27 W/m2, R2=0.74). The RMSE is expressed as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

ðLEest � LEobsÞ2

N

vuuuut ð2Þ

where LEest is the estimated latent heat flux (LE) by the algorithm,
LEobs represents the observed latent heat flux, and N is the total
number of samples. The smaller the RMSE, the better able the
model to estimate ET.

In RS-PM, the surface conductance is estimated by using
NDVI and LAI, such that:

FC ¼ NDVI� NDVImin

NDVImax � NDVImin

� �2

gs ¼ cL maxðLAImin; ðFCLAImaxÞÞ ð3Þ

In Eq. (3), gs (m/s) is the surface conductance and rs (s/m) is
the inverse of gs; cL (m/s) is the mean surface conductance per
unit leaf area index; FC is the fractional vegetation cover; and
NDVImin and NDVImax are the minimum and maximum NDVI
during the study period.

There are two major problems with Cleugh et al.'s (2007)
RS-PM algorithm. First, they have used NDVI and LAI to
calculate rs, assuming that surface resistance is equal to canopy
resistance and that soil evaporation is small enough to be
neglected in comparison to transpiration from plants. Studies
have demonstrated, however, that high ratios of soil evaporation
to ET are often observed when the canopy cover (or LAI) is low
and the soil surface is moist to wet most of the time (Hsiao &Xu,
2005). For example, Villalobos and Fereres (1990) measured
soil evaporation to be 60%–80% of ET for sunflower, maize, and
cotton with LAI of 0.6 to 1.2. As the crop canopy increases,
covering a larger portion of the ground, soil evaporation de-
creases. Bethenod et al. (2000) studied maize with complete
canopy cover (LAI≈4.0) and found that soil evaporation was
approximately 10% of total ET. Wilson et al. (2000) measured
the energy balance above and below the canopy of a temperate
deciduous forest ecosystem and found that, on an annual basis,
the ET fluxes from the forest floor were 15%–22% of those
above the canopy and the evaporation was 86 mm, or about 10%
of the total ecosystem ET.

Second, there is no water stress or temperature constraint on
canopy conductance in the RS-PM algorithm, which can result
in large biases in dry or cold seasons. Saugier et al. (1997)
measured the transpiration of a boreal pine forest in the southern
Canada BOREAS study area. They observed that transpiration
rates were low even when the soil was well supplied with water,
attributing the low rates of transpiration to the canopy's low LAI
and a marked reduction in stomatal conductance as vapor
pressure deficits increased. To resolve these two issues, we have
improved RS-PM algorithm as described in Sections 2.1 through
2.3 by (1) adding vapor pressure deficit and minimum air tem-
perature constraints on stomatal conductance; (2) using leaf area
index as a scalar for estimating canopy conductance; (3) re-
placing the Normalized Difference Vegetation Index with the
Enhanced Vegetation Index, thereby also changing the equa-
tion for calculation of the vegetation cover fraction (FC); and
(4) adding a calculation of soil evaporation. Fig. 1 shows the
logic behind the MODIS ET Algorithm for calculating daily
MODIS ET.

2.1. Improvements to canopy conductance calculation

For many plant species, stomatal conductance (Cs) decreases
as vapor pressure deficit (VPD) increases, and stomatal con-
ductance is further limited by both low and high temperatures
(Dang et al., 1997; Jarvis, 1976; Kawamitsu et al., 1993;
Leuning, 1995; Marsden et al., 1996; Misson et al., 2004; Oren
et al., 1999, 2001; Sandford & Jarvis, 1986; Schulze et al., 1994;
Xu & Baldocchi, 2002). VPD is calculated as the difference
between saturated air vapor pressure, as determined from air
temperature (Murray, 1967), and actual air vapor pressure. Be-
cause high temperatures are often accompanied by high VPDs,
we have only added constraints on stomatal conductance for
VPD and minimum air temperature, ignoring constraints re-
sulting from high temperature. We used LAI as a scalar to
convert the stomatal conductance (Cs) calculated at the leaf level
to a canopy conductance (Cc) (Landsberg & Gower, 1997):

CS ¼ cL � mðTminÞ � mðVPDÞ

Cc ¼ Cs� LAI ð4Þ
where cL is the mean potential stomatal conductance per unit
leaf area, m(Tmin) is a multiplier that limits potential stomatal
conductance by minimum air temperatures (Tmin), andm(VPD)
is a multiplier used to reduce the potential stomatal conductance
when VPD is high enough to inhibit photosynthesis (Dang et al.,
1997; Jarvis, 1976; Kawamitsu et al., 1993; Leuning, 1995;
Marsden et al., 1996; Misson et al., 2004; Oren et al., 1999,
2001; Sandford & Jarvis, 1986; Schulze et al., 1994; Xu &
Baldocchi, 2002). In the case of plant transpiration, surface
conductance (gs in Eq. (3)) is equal to the canopy conductance,
and hence surface resistance (rs) is the inverse of canopy con-
ductance (Cc). The LAI in Eq. (4) is obtained from the global
8-day standard MODIS LAI product, which is estimated using a
canopy radiation transfer model combined with remotely sensed
surface reflectance data (Myneni et al., 2002). We calculate the
constraints for minimum air temperature (Tmin) and VPD as:

mðTminÞ ¼
1:0 TminzTminPopen
Tmin� TminPclose

TminPopen� TminPclose
TminPclosebTminbTminPopen

0:1 TminVTminPclose

8>><
>>:
mðVPDÞ ¼
1:0 VPDVVPDPopen

VPDPclose� VPD

VPDPclose� VPDPopen
VPDPopenbVPDbVPDPopen

0:1 VPDzVPDPclose

8>><
>>:

ð5Þ
where close indicates nearly complete inhibition (full stomatal
closure) and open indicates no inhibition to transpiration (Table 1).



Table 1
The Biome Properties Look-Up Table (BPLUT) for MODIS ET

Parameter ENF EBF DNF DBF MF WL

Tmin_open (°C) 8.31 9.09 10.44 9.94 9.50 11.39
Tmin_close (°C) −8.00 −8.00 −8.00 −6.00 −7.00 −8.00
VPD_close (Pa) 2500 3900 3500 2800 2700 3300
VPD_open (Pa) 650 930 650 650 650 650

Parameter Wgrass Cshrub Oshrub Grass Crop

Tmin_open (°C) 11.39 8.61 8.80 12.02 12.02
Tmin_close (°C) −8.00 −8.00 −8.00 −8.00 −8.00
VPD_close (Pa) 3600 3300 3700 3900 3800
VPD_open (Pa) 650 650 650 650 650

ENF: evergreen needleleaf forest; EBF: evergreen broadleaf forest; DNF:
deciduous needleleaf forest; DBF: deciduous broadleaf forest; MF: mixed forest;
WL: woody savannas; Wgrass: savannas; Cshrub: closed shrubland; Oshrub:
open shrubland; Grass: grassland, urban and built-up, barren or sparsely
vegetated; Crop: cropland.

Fig. 1. Flowchart showing the logic behind the MODIS ET Algorithm for calculating daily MODIS ET.
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When Tmin is lower than the threshold value Tmin_close, or
VPD is higher than the threshold VPD_close, the temperature or
the water stress will cause stomata to close almost completely,
halting plant transpiration. On the other hand, when Tmin is
higher than Tmin_open, and VPD is lower than VPD_open, there
will be no temperature or water stress on transpiration. The mul-
tipliers range linearly from 0.1 (nearly total inhibition, limiting rs)
to 1 (no inhibition) for the range of biomes also used in the
MOD17 GPP/NPP algorithm, which are listed in a Biome Pro-
perties Look-Up Table (BPLUT) (Table 1) (Heinsch et al., 2003;
Running et al., 2004). Complete details on the derivation of the
algorithm and the values used in the BPLUT can be found else-
where (Heinsch et al., 2003; Running et al., 2000). The effect of
soil water availability is not included in the ET algorithm. Some
studies have suggested that atmospheric conditions reflect surface
parameters (Bouchet, 1963; Morton, 1983), and VPD can be used
as an indicator of environment water stress (Granger & Gray,
1989; Running & Nemani, 1988). In addition, Mu et al. (2007)
found that VPD alone can capture interannual variability of the
full water stress from both the atmosphere and soil for almost all
of China and the conterminous U.S., though it may fail to capture
the full seasonal water stress in dry regions experiencing strong
summer monsoons.

2.2. Improvements on vegetation cover fraction

The Normalized Difference Vegetation Index (NDVI) and
Enhanced Vegetation Index (EVI) are designed to provide con-
sistent, spatial, and temporal comparisons of global vegetation
conditions that can be used to monitor photosynthetic activity
(Huete et al., 2002; Justice et al., 2002; Tucker, 1979). NDVI is
defined as

NDVI ¼ qNIR � qred
qNIR þ qred

ð6Þ

where ρNIR (841–876 nm) and ρred (620–670 nm) are the surface
reflectance factors for the respective MODIS near-infrared and
red bands, respectively. The primary disadvantage of NDVI is the
inherent non-linearity of ratio-based indices and the influence of
additive noise effects, such as atmospheric path radiances. The
NDVI also exhibits scaling problems and asymptotic (saturated)
signals during high biomass conditions. It is very sensitive to
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canopy background variations, with NDVI degradation particu-
larly strong at higher canopy background brightness (Huete et al.,
2002). The enhanced vegetation index (EVI) was developed to
optimize the vegetation signal with improved sensitivity in high
biomass regions and improved vegetation monitoring through a
decoupling of the canopy background signal and a reduction in
atmosphere influences, using the equation:

EVI ¼ G� qNIR � qred
qNIR þ C1 � qred � C2 � qblue þ L

ð7Þ

where ρ is the surface reflectance in each respective band (ρblue:
459–479 nm), L is the canopy background adjustment that ad-
dresses non-linear, differential NIR and red radiant transfer
through a canopy, C1/C2 are the coefficients of the aerosol re-
sistance term, which use the blue band to correct for aerosol
influences in the red band, and G (gain factor)=2.5. More details
can be found in papers by Huete et al. (2002, 2006).

FC is defined as the fraction of ground surface covered by the
maximum extent of the vegetation canopy (varies between 0
and 1). Cleugh et al. (2007) calculated FC using NDVI (Eq. (3)).
In our Revised RS-PM algorithm, we have replaced NDVI with
EVI, calculating vegetation cover fraction as:

FC ¼ EVI� EVImin

EVImax � EVImin
ð8Þ

where EVImin and EVImax are the signals frombare soil (LAI→0)
and dense green vegetation (LAI→∞) (Gutman & Ignatov,
1998), which are set as seasonally- and geographically invariant
constants 0.05 and 0.95, respectively. When Fc is bigger than 1,
Fc is 1, and when Fc is less than 0, Fc is 0. We have done several
sensitivity experiments, setting (EVImin, EVImax) as (0.01, 0.99),
(0.05, 0.92), (0.11, 0.92) and (−0.5, 0.99), respectively. There is
not much difference between the RMSE (less than 1.00 W/m2),
bias (about 3.00W/m2) and correlation coefficient (less than 0.01)
from different sensitivity experiments.

Net radiation is linearly partitioned between the canopy and
the soil surface using this vegetation cover fraction (FC) such
that:

AC ¼ FC � A

ASOIL ¼ ð1� FCÞ � A ð9Þ

where AC and ASOIL are the total net incoming radiation (A)
partitioned to the canopy and soil, respectively.

2.3. Soil evaporation

To account for areas with sparse canopy cover, we have
added a soil evaporation component to our Revised RS-PM
algorithm. To calculate soil evaporation, the potential evapora-
tion (λESOIL_POT) is first calculated using the Penman–Monteith
method (Eq. (1)). The total aerodynamic resistance to vapor
transport (rtot) is the sum of surface resistance (rs) and the aero-
dynamic resistance for vapor transport (rv) such that rtot = rv+ rs
(Van de Griend, 1994). A constant rtotc (107 s m−1) for rtot is
assumed globally based on observations of the ground surface in
tiger-bush in southwest Niger (Wallace & Holwill, 1997), but
it is corrected (rcorr) for atmospheric temperature (T) and pres-
sure (P) (Jones, 1992) with standard conditions assumed to be
T=20 °C and P=101,300 Pa.

rcorr ¼ 1:0
273:15þT
293:15

� �1:75� 101300
P

rtot ¼ rtotc � rcorr
rtotc ¼ 107:0 ð10Þ
We assume that rv (s/m) is equal to the aerodynamic resistance

(ra: s/m) from Eq. (1) since the values of rv and ra are usually very
close (Van de Griend, 1994). The aerodynamic resistance (ra) is
parallel to both the resistance to convective heat transfer (rc: s/m)
and the resistance to radiative heat transfer (rr: s/m) (Choudhury&
DiGirolamo, 1998), such that

rr ¼ q� Cp

4:0� r� T3

ra ¼ rc � rr
rc þ rr

ð11Þ

The rc is assumed to be equal to boundary layer resistance,
which is calculated in the same way as total aerodynamic
resistance (rtot) from Eq. (10) (Thornton, 1998). Finally, the
actual soil evaporation (λESOIL) is calculated in Eq. (12) using
potential soil evaporation (λESOIL_POT) and the complementary
relationship hypothesis (Bouchet, 1963; Fisher et al., in press),
which defines land-atmosphere interactions from vapor pressure
deficit and relative humidity (RH, %).

kESOIL POT ¼ sASOIL þ qCpðesat � eÞ=ra
sþ g� rtot

ra

kESOIL ¼ kESOIL POT � RH
100

� �ðesat�eÞ=100
ð12Þ

To examine the sensitivity of λESOIL to rtot in Eq. (10), we
used different values for rtotc in the algorithm. The observed LE
average over the 19 flux towers is 66.9 W/m2, while the average
LE estimate is 61.0 W/m2 driven by tower meteorological data
and 65.6 W/m2 driven by GMAO data. When rtotc is 10 s m−1,
much lower than 107 s m−1, soil evaporation is much higher,
and hence LE is much higher, with the average tower-driven LE
of 86.0 W/m2 and GMAO-driven LE of 98.7 W/m2. However,
when rtotc ranges between 50 s m

−1 and 1000 s m−1, there is little
difference in the soil evaporation results, and there is, therefore,
little change in LE (tower-driven LE average of 54.4–64.6W/m2

andGMAO-driven LE average of 58.9–70.0W/m2). The value of
50 sm−1 was chosen as the lower bound because it is very close to
the mean boundary layer resistance for vegetation under semiarid
conditions, and there is little variation around this mean (Van de
Griend, 1994). Finally, the latent heat flux for the ecosystem is
calculated as the sum of the transpiration (Eq. (1)) and the soil
evaporation (Eq. (12)).



Fig. 2. Distribution of the 19 AmeriFlux eddy flux towers used for verification of
the ET algorithm.
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3. Eddy covariance flux towers

To validate our Revised RS-PM algorithm, we used the ob-
served latent heat flux for a number of field-based eddy co-
variance flux towers. The AmeriFlux network (http://public.ornl.
gov/ameriflux/) was established in 1996 as a network of field sites
that provide continuous observations of ecosystem level ex-
change of CO2, water, and energy. AmeriFlux, part of the global
Fluxnet network (Baldocchi et al., 2001), is currently comprised
of 106 sites in North America, Central America, and South
America. We verified the ET algorithm at 19 AmeriFlux eddy
covariance tower sites (Table 2, Fig. 2) during 2001. These flux
towers (Fig. 2, Table 2) cover six typical land cover types and a
wide range of climates.

4. Data and methods

4.1. Eddy covariance flux tower sites

For each tower, we obtained the ET estimates using both the
RS-PM algorithm and our Revised RS-PM algorithm, compar-
ing the estimated ET with observations at the flux tower sites.
Since the observed water vapor fluxes are the sum of the plant
transpiration and soil evaporation, and it is not possible to sep-
arate the two fluxes using standard flux tower data, we compare
only the total evapotranspiration estimates with the observed
total ET.

4.1.1. Input datasets
For each tower and each algorithm, we estimated ET using

two different sets of meteorological data: (1) integrated meteo-
rological data derived from the half-hour observations at flux
tower sites and (2) the Global Modeling and Assimilation Office
(GMAO; Global Modeling and Assimilation Office, 2004)
meteorological data at 1.00°×1.25° resolution. The GMAO
Table 2
The locations, abbreviations, biome types in the parentheses, latitude (Lat), longitude
LAI (LAI) and the published papers for the 19 AmeriFlux eddy flux towers

Site Abbrev. Lat L

Kennedy Space Flight Center scrub oak, FL KSCOak (DBF) 28.61
Austin Cary, FL AUS (ENF) 29.74
Donaldson, FL Dnld (ENF) 29.75
Mize, FL Mize (ENF) 29.76
Duke Forest hardwoods, NC DukeHdwd (DBF) 35.97
Duke Forest pine, NC Duke_Pine (ENF) 35.98
Walnut River, KS Walnut (Grass) 37.52
Vaira Ranch, CA Vaira (Grass) 38.41 −
Tonzi Ranch, CA Tonz (Savanna) 38.43 −
Blodgett, CA Blod (ENF) 38.90 −
Bondville, IL Bond (Crop) 40.01
Niwot Ridge Forest, CO NwtR (ENF) 40.03 −
Black Hills, SD BlkHls (ENF) 44.16 −
Univ of Michigan, MI UMBS (ENF) 45.56
Fort Peck, MT FtPeck (Grass) 48.31 −
Lethbridge, Alberta Leth (Grass) 49.71 −
Campbell River, Vancouver Island, BC CampRvr (ENF) 49.85 −
BOREAS NSA— Old Black Spruce, Manitoba NOBS (ENF) 55.88
Barrow, AK BRW (OShrub) 71.32 −
dataset is also used in the calculation of MODIS GPP and NPP
(Running et al., 2004). Remote sensing inputs include Collection
4 MODIS land cover (MOD12Q1; Friedl et al., 2002),
MOD13A2 NDVI/EVI (Huete et al., 2002, 2006), MOD15A2
LAI (Myneni et al., 2002), and the 0.05° albedo fromMOD43C1
(http://www-modis.bu.edu/brdf/userguide/cmgalbedo.html; Jin
et al., 2003a,b; Lucht et al., 2000; Salomon et al., 2006; Schaaf
et al., 2002). For each tower, we calculated the ET for the vege-
tated 3×3 1-km2 MODIS pixels surrounding each site driven by
the pre-processed GMAO and MODIS data as following, and
(Lon), elevation (Elev, unit: m), annual mean MODIS EVI (EVI), annual mean

on Elev EVI LAI Citation

−80.67 3 0.40 3.8
−82.22 50 0.41 4.4 Powell et al. (2005)
−82.16 50 0.39 3.0 Clark et al. (2004)
−82.24 50 0.37 3.6 Clark et al. (2004)
−79.10 0 0.41 4.2 Stoy et al. (2006)
−79.09 163 0.41 4.2 Stoy et al. (2006)
−96.86 408 0.28 1.3
120.95 129 0.30 2.1
120.97 177 0.30 1.9
120.63 1315 0.37 3.6 Goldstein et al. (2000)
−88.29 213 0.40 2.8
105.55 3050 0.28 2.2
103.65 0 0.32 2.9
−84.71 234 0.35 3.1
105.10 634 0.16 0.4
112.94 960 0.16 0.3 Flanagan et al., 2002; Wever et al., 2002
125.32 300 0.40 3.9
−98.48 259 0.25 2.5 Dunn et al., 2007; data version: June, 2006
156.63 1 0.26 0.7

http://public.ornl.gov/ameriflux/
http://public.ornl.gov/ameriflux/
http://www-modis.bu.edu/brdf/userguide/cmgalbedo.html
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averaged the ET across all pixels. These averages were then
compared with the tower ET observations.

4.1.2. Pre-processing data

4.1.2.1. Tower observations. For site observations of ET and
meteorology, we aggregated the half-hourly data provided by
the tower researchers into daily data without using additional
quality control. To maintain the integrity of the observations, no
gap-filling was performed for these data.

4.1.2.2. Spatially interpolating GMAO data. The resolution
for GMAOmeteorological data is too coarse for a 1-km2 MODIS
pixel. Zhao et al. (2005) found that, in the Collection 4 MODIS
GPP/NPP algorithm (MOD17), each 1-km pixel falling into the
same 1.00°×1.25° GMAO grid cell inherited the same meteo-
rological data, creating a noticeable GMAO footprint (Fig. 1a,c in
Zhao et al., 2005). Such treatment may be acceptable on a global
or regional scale, but it can lead to large inaccuracies at the local
scale, especially for terrain with topographical variation or located
in relatively abruptly climatic gradient zones. To enhance the
meteorological inputs, Zhao et al. (2005) have non-linearly in-
terpolated the coarse resolutionGMAOdata to the 1-km2MODIS
pixel level based on the four GMAO cells surrounding a given
pixel. Theoretically, this GMAO spatial interpolation improves
the accuracy of meteorological data for each 1-km2 pixel because
it removes the abrupt changes from one side of a GMAO
boundary to the other. In addition, for mostWorldMeteorological
Organization (WMO) stations, spatial interpolation reduced the
RMSE and increased the correlation between theGMAOdata and
the observed WMO daily weather data for 2000–2003, suggest-
ing that the non-linear spatial interpolation considerably improves
GMAO inputs. These interpolated data were, therefore, used in
our calculations of ET.

4.1.2.3. Temporally interpolating MODIS data with bad QC or
missing data. The 8-day MODIS LAI (MOD15A2) (Myneni
et al., 2002) and 16-day MODIS NDVI and EVI (MOD13A2)
(Huete et al., 2002, 2006) contain some cloud-contaminated
or missing data (Hill et al., 2006). According to the MOD15A2
quality assessment scheme provided by Myneni et al. (2002),
FPAR/LAI values retrieved by the main algorithm (i.e., Radiation
Fig. 3. The 8-day composite leaf area index (LAI) in Amazon region for the 8-day peri
of the LAI and (b) the temporally interpolated LAI.
Transfer process, denoted as RT) are most reliable, and those
retrieved by the back-up algorithm (i.e., the empirical relationship
between FPAR/LAI andNDVI) are less reliable because the back-
up algorithm is employed mostly when cloud cover, strong atmo-
spheric effects, or snow/ice are detected. The LAI retrievals by the
backup algorithm have low quality and should not be used for
validation and other studies (Yang et al., 2006). We temporally
filled the missing or unreliable LAI, NDVI, and EVI at each 1-km
MODIS pixel based on their corresponding quality assessment
data fields as proposed by Zhao et al. (2005). The process entails
two steps (see Fig. 5 in Zhao et al., 2005). If the first (or last) 8-day
LAI (16-day NDVI, EVI) is unreliable or missing, it will be
replaced by the closest reliable 8-day (16-day) value. This step
ensures that the second step can be performed in which other
unreliable LAI (NDVI, EVI) will be replaced by linear inter-
polation of the nearest reliable values prior to and after themissing
data point.

4.1.2.4. MODIS albedo. For MODIS albedo, we used the 10th
band of theWhite-Sky-Albedo from the 0.05° 16-dayMOD43C1
BRDF products (Jin et al., 2003a,b; Lucht et al., 2000; Salomon
et al., in press; Schaaf et al., 2002; http://www-modis.bu.edu/brdf/
userguide/cmgalbedo.html). This MODIS albedo is used to cal-
culate reflected solar radiation, and hence the net incoming solar
radiation. The unreliable or missing albedo data are also tem-
porally filled with the method proposed by Zhao et al. (2005).

4.2. Data at the global scale

The input data for the global ET include the 1.00°×1.25°
GMAO meteorological data and the 0.05° MODIS data as out-
lined in Section 4.1 for 2001. We used the same method as in
Section 4.1.2.2 to get the interpolated 0.05° GMAO data, and the
same method as in Section 4.1.2.4 to get the MODIS albedo for
each 0.05° MODIS pixel.

4.2.1. MODIS LAI from MOD15A2
We filled the unreliable 1-km2 LAI data using the MOD15A2

quality assessment fields and the method proposed by Zhao et al.
(2005), aggregated these enhanced 1-km2 LAI into 5-km data,
and further reprojected the 5×5-km Sinusoidal data to 0.05° LAI
in geographic projection. South America is the area where the
od 081 (March 21–28) in 2001 for (a) the original with no temporal interpolation

http://www-modis.bu.edu/brdf/userguide/cmgalbedo.html
http://www-modis.bu.edu/brdf/userguide/cmgalbedo.html


Fig. 4. The ETobservations (black dots, OBS), the ETestimates driven by flux tower observedmeteorological data (black lines, tower_met) and GMAOmeteorological
data (grey lines, GMAO_met) in 2001 from the RS-PM algorithm (a, c) and our Revised RS-PM algorithm (b, d) at two tower sites UMBS (a,b) and NwtR (c,d).
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cloud contamination is the most serious and the LAI seasonality
is very small. To explore how the QC-controlled interpolations
alter and enhance the input MODIS data quality, we compare the
Fig. 5. Comparison of annual latent heat flux (LE) observations from the flux tower s
were created using (a) tower-specific meteorology and (b) the global GMAO meteo
8-day composited LAI in the Amazon for the original data in-
tegrated from MOD15A2 without the temporal interpolation and
the enhanced LAI values with the interpolation for the period of
ites and the ET estimates averaged over the MODIS 3×3 km cutout. These data
rology.
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March 21–28, 2001 during the wet season with the worst cloud
contamination (Fig. 3). The original LAI values are too small
(b2.0 m2/m2) for a large area surrounding the Amazon River, the
result of severe cloud contamination. The MODIS land cover
indicates most forests in the northern South America in Fig. 3 are
evergreen broadleaf forests (EBF). Field LAI observations
revealed a mean LAI of 4.8±1.7 for 61 observations in tropical
EBF (Asner et al., 2003; Malhi et al., 2004, 2006). There are a
few pixels for which the enhanced LAI values are smaller than
the original data because of the bad QCs. Overall, however, after
temporal filling, LAI values in Amazon are much higher and the
spatial pattern is more realistic.

4.2.2. MODIS EVI calculated from MOD43C3
Since Collection 4 MODIS data don't have a 0.05° global

EVI product, we calculated the 0.05° global EVI (Eq. (7))
(Huete et al., 2002, 2006) using the 0.05° MODIS 43C3 BRDF
(Bidirectional Reflectance Distribution Function) quality-con-
Fig. 6. Root mean square error (RMSE) between observed and calculated 8-day laten
tower meteorological data (tower met) and (b) GMAOmeteorological data (GMAOm
estimates driven by Cleugh's RS-PM algorithm; white columns are those driven by ou
broadleaf forest; Oshrub: open shrub.
trolled surface reflectance. We then filled EVI gaps due to un-
reliable or missing BRDF reflectance with the method proposed
by Zhao et al. (2005).

5. Results and discussion

5.1. Verification at the eddy flux tower sites

TheETaverage over the 3×3 1-kmMODISpixels surrounding
each site was compared with the tower ET observations.

Two tower sites with more than 300 days of available ET
and meteorological observations in 2001 were used to compare
seasonal results between the RS-PM algorithm and our Revised
RS-PM algorithm. The UMBS tower (University of Michigan
Biological Station) is located within a mixed deciduous–conifer
forest (45.5597 °N,− 84.7138°). The glacial moraine forest at
Niwot Ridge (NwtR), CO, (40.0329 °N,− 105.5464°) is a sub-
alpine coniferous forest site. Fig. 4 (a, b) demonstrates that our
t heat flux using the RS-PM and Revised RS-PM algorithms driven by (a) flux
et). Grey columns are the RMSE between the 8-day LE observations and the LE
r Revised RS-PM algorithm. ENF: evergreen needle-leaf forest; DBF: deciduous



Table 3
The tower abbreviations, 8-day RMSE, biases (BIAS) and correlation
coefficient (R) of latent heat flux for the 19 AmeriFlux eddy flux towers as in
Table 2

Site RMSE1 RMSE2 RMSE3 RMSE4

KSCOak (DBF) 86.65 35.51 19.85 22.47
AUS (ENF) 50.66 72.20 17.93 24.38
Dnld (ENF) 47.06 46.26 43.48 41.40
Mize (ENF) 68.51 53.19 43.04 52.29
DukeHdwd (DBF) 91.63 120.23 27.71 29.22
Duke_Pine (ENF) 58.86 111.67 19.79 25.22
Walnut (Grass) 61.10 36.67 17.12 16.34
Vaira (Grass) 125.60 113.10 32.06 36.26
Tonz (Savanna) 148.31 134.29 40.77 48.04
Blod (ENF) 151.16 181.59 30.63 41.48
Bond (Crop) 47.58 54.56 52.81 45.84
NwtR (ENF) 37.41 59.68 40.55 33.21
BlkHls (ENF) 105.48 103.69 10.46 19.04
UMBS (ENF) 53.14 66.96 24.52 22.37
FtPeck (Grass) 22.35 22.67 22.90 21.39
Leth (Grass) 20.36 21.60 24.75 24.74
CampRvr (ENF) 24.17 48.37 16.40 19.30
NOBS (ENF) 13.72 72.09 27.38 29.71
BRW (OShrub) 14.05 12.64 7.23 8.09
Average 64.62 71.95 27.34 29.52

Site BIAS1 BIAS2 BIAS3 BIAS4

KSCOak (DBF) 74.43 26.35 5.73 −1.20
AUS (ENF) 43.85 63.67 7.75 11.98
Dnld (ENF) 17.13 25.92 −31.76 −26.10
Mize (ENF) 44.90 21.59 −18.99 −23.27
DukeHdwd (DBF) 80.27 97.47 2.76 9.87
Duke_Pine (ENF) 44.89 87.37 −5.13 9.87
Walnut (Grass) 37.60 16.26 −10.85 −6.45
Vaira (Grass) 90.16 84.16 7.78 12.25
Tonz (Savanna) 130.42 119.18 38.48 45.27
Blod (ENF) 121.38 154.31 −11.95 −10.18
Bond (Crop) 1.77 16.12 −36.75 −28.15
NwtR (ENF) −12.51 20.73 −35.90 −27.18
BlkHls (ENF) 90.37 94.51 −2.85 6.53
UMBS (ENF) 30.13 35.79 −14.51 −11.65
FtPeck (Grass) −8.82 −9.46 −8.90 −6.59
Leth (Grass) −5.53 −9.00 −12.15 −10.57
CampRvr (ENF) −6.45 31.31 −4.89 11.12
NOBS (ENF) −5.83 47.60 17.31 20.29
BRW (OShrub) −10.01 −8.69 3.68 −0.01
Average 39.90 48.17 −5.85 −1.27

Site R1 R2 R3 R4

KSCOak (DBF) 0.89 0.89 0.84 0.80
AUS (ENF) 0.56 0.49 0.81 0.67
Dnld (ENF) 0.48 0.48 0.60 0.51
Mize (ENF) 0.68 0.62 0.81 0.72
DukeHdwd (DBF) 0.92 0.90 0.92 0.91
Duke_Pine (ENF) 0.90 0.88 0.90 0.87
Walnut (Grass) 0.91 0.88 0.90 0.87
Vaira (Grass) 0.47 0.49 0.70 0.62
Tonz (Savanna) 0.15 0.27 −0.13 −0.04
Blod (ENF) 0.80 0.87 0.86 0.67
Bond (Crop) 0.86 0.88 0.81 0.82
NwtR (ENF) 0.76 0.86 0.89 0.88
BlkHls (ENF) 0.63 0.77 0.96 0.86
UMBS (ENF) 0.96 0.95 0.95 0.96
FtPeck (Grass) 0.41 0.42 0.34 0.42
Leth (Grass) 0.67 0.66 0.66 0.57
CampRvr (ENF) 0.85 0.85 0.91 0.91

Table 3 (continued )

Site RMSE1 RMSE2 RMSE3 RMSE4

NOBS (ENF) 0.85 0.85 0.89 0.89
BRW (OShrub) 0.60 0.66 0.84 0.70
Average 0.70 0.72 0.76 0.72

1: Tower-driven results from RS-PM; 2: GMAO-driven results from RS-PM; 3:
tower-driven results from Revised RS-PM; 4: GMAO-driven results from
Revised RS-PM.

Table 3 (continued )

Site R1 R2 R3 R4
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Revised RS-PM algorithm performs better than the RS-PM
algorithm at UMBS in 2001. Our Revised RS-PM algorithm
reduced the ET from nearly twice the magnitude of the observed
ET data to values similar to the observations during May–
September, while reducing the RMSE of the 8-day latent heat
flux from 53.1 W/m2 (62.8% of the observed annual mean) to
24.5 W/m2 (29.0%) when the algorithm is driven by tower
meteorological data, and from 67.0W/m2 (79.1%) to 22.4W/m2

(26.4%) with the GMAO meteorological data. However, Fig. 4
(c, d) shows that Revised RS-PM algorithm generally performs
worse than the original ET algorithm at NwtR when driven by
tower meteorological data in 2001. The ET estimates from our
Revised RS-PM algorithm are much lower in spring and summer
than the observations, but are much closer to the observations
than those from RS-PM algorithm in autumn and winter. The
RMSE of the 8-day latent heat flux driven by tower meteo-
rological data increased from 37.4W/m2 (50.2% of the observed
annual mean) with the RS-PM algorithm to 40.6 W/m2 (54.4%)
using Revised RS-PM algorithm. The NwtR site is located in the
Roosevelt National Forest in the Rocky Mountains, sits on a
glacial moraine and was established following clear-cut logging.
Subalpine forest extends 2 km west of the tower. Due to the
complex terrain and resulting heterogeneity of the landscape
surrounding NwtR, it is possible that biases in scaling LE esti-
mates from the flux tower to the larger 3×3 1-km2 area would be
greater than at more homogeneous sites, decreasing the inaccu-
racies when using larger-scale models.

Fig. 5 shows the comparison between annual latent heat flux
(LE) observations measured at the nineteen flux tower sites and
those estimated with our Revised RS-PM algorithm averaged
over a MODIS 3×3 1-km2 cutout. These two sets of estimated
data were driven by tower-specific meteorology (Fig. 5a) and the
global GMAOmeteorology (Fig. 5b). The correlation coefficients
between the LE observations and tower-driven algorithm
estimates are R=0.86 (pb0.00001) using our Revised RS-PM
algorithm and R=0.68 (p=0.0014) using RS-PM. Comparison of
tower data with results driven by the GMAO meteorology re-
sulted in correlations of R=0.86 (pb0.00001) with our Revised
RS-PM algorithm and R=0.67 (p=0.0017) with RS-PM. The
relative error between the 8-day averaged LE estimates driven by
GMAO and tower meteorology is 14.3%, indicating that meteo-
rology plays an important role in the accuracy of our Revised
RS-PM algorithm.

Our Revised RS-PM algorithm improves the ET estimates at
most of the 19 flux tower sites in 2001 compared with these
estimated using the RS-PM algorithm (Fig. 6; Table 3). When
driven by tower meteorological data, our Revised RS-PM



Fig. 7. Global ET driven by interpolated GMAOmeteorological data and 0.05° MODIS data in 2001 with the maximum ETof 1197 mm/yr and an average ETof 286±
237 mm/yr for vegetated land areas. Vegetated regions are shown in color, while regions in white are barren or sparsely vegetated areas and non-vegetated areas,
including water bodies, snow and ice, and urban areas.
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algorithm reduced RMSE at 14 of the 19 flux tower sites, while
reducing the RMSE at 18 of the 19 flux tower sites when driven
by the GMAO data. The average RMSE of the 8-day latent heat
fluxes over the 19 flux towers (Fig. 6; Table 3) decreased from
64.6 W/m2 using the RS-PM algorithm to 27.3 W/m2 with our
Revised RS-PM algorithm (tower-based meteorology) and from
71.9 W/m2 to 29.5 W/m2 (GMAO meteorology). The corre-
lation coefficients between the ET estimates and observations
for the 8-day results are very similar from both algorithms,
averaging 0.72 with GMAO meteorological data and 0.76
with tower meteorological data (Table 3). The existing biases
between the ET estimates and the ET observations may be
influenced by:

1) Algorithm input data. Heinsch et al. (2006) compared tower
meteorological data with GMAO data, and the 1-km MODIS
LAI (MOD15) and MODIS land cover (MOD12) with
ground-based measurements, finding existing biases in both
the GMAO data and the MODIS data when compared to
observations. While approximately 62% of MODIS LAI esti-
mates were within the estimates based on field optical mea-
surements, remaining values overestimated site values
(Heinsch et al., 2006). Comparison of LAI at the patch level
can significantly improve the results, but MODIS LAI still
tends to be higher (Wang et al., 2004). Overestimates of LAI
may result in overestimates of ETeven if other input data such
as the meteorological data and MODIS EVI data are relatively
accurate. Although the temporal filling of unreliable MODIS
data, including LAI, EVI and albedo, greatly improves the
accuracy of inputs, the filled values are artificial and contain
uncertainties. The MODIS LAI data are generated using the
Collection 3 Land Cover data (Myneni et al., 2002), while we
use the Collection 4 Land Cover product in our ET calcu-
lations. While differences between the two Land Cover data
products are small (unpublished data), this could lead to
inaccuracies in estimating ET. The inaccuracy in MODIS EVI
will lead to miscalculation of Fc, and hence ET. An extreme
experiment conducted by setting Fc as 1.0 for all 19 towers
shows that tower-driven RMSE increases from 27.3 W/m2 to
40.1 W/m2, from 29.5 W/m2 to 49.6 W/m2 driven by GMAO
data. The average LE bias of the tower-driven LE estimates to
the LE observations changed from −5.8 W/m2 to 19.2 W/m2

and from −1.3 W/m2 to 31.2 W/m2 driven by GMAO data.
Finally, MOD12Q1 accuracies are in the range of 70–80%,
with most mistakes between similar classes (Strahler et al.,
2002). Misclassification of the land cover will result in using
the wrong parameters for VPD and minimum air temperature
for stomatal conductance constraints, resulting in less accurate
ETestimates. When no water or air temperature stress was put
on the stomatal conductance, the tower-driven RMSE in-
creased from 27.3 W/m2 (with stress) to 43.2 W/m2, from
29.5W/m2 (with stress) to 46.3 W/m2 driven by GMAO data.
The average LE bias of the tower-driven LE estimates to the
LE observations changed from −5.8 W/m2 (with stress) to
19.9 W/m2 and from −1.3 W/m2 (with stress) to 23.3 W/m2

driven by GMAO data. The correlation coefficients decreased
from 0.76 (with stress) to 0.67 with the use of tower meteo-
rological data.Water stress and air temperature stress can affect
the ET estimates a lot. All of these uncertainties from inputs
can introduce biases in ETestimates that are difficult to detect.

2) Missing observation data. The tower latent heat flux and
meteorological data is typically reported at a half-hourly



Fig. 8. (a) Annual total precipitation and (b) annual total MODIS GPP versus
annual total ET (driven by GMAO meteorological data) in 2001. The solid line
in (a) represents that the ratio of ET to precipitation is 1.0.
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interval. For seven of the 19 Ameriflux towers we used, there
were fewer than 200 available days of both LE and meteo-
rological data. For these available daily observations, there
were, on average, fewer than 15measurements per day. Using
so few observation samples to obtain estimates of daily me-
teorology or a daily average of ET can lead errors in the
analysis (Desai et al., 2005). However, most gap-filling
methods have been tested on net ecosystem exchange of CO2

and not ET, limiting our ability to obtain reliable gap-filled
estimates of daily ET.

3) Scaling from tower to landscape. The size of the flux tower
footprint is largely influenced by tower height and local
environment conditions (Cohen et al., 2003; Turner et al.,
2003a,b). The comparison of observed ET with the estimated
from the 3×3 1-km2 MODIS across all 19 sites may introduce
uncertainties due to the differences in tower footprints for
different towers and under varying environmental conditions
for a given tower. In heterogeneous areas, the differing scales
of the tower andMODISETestimates should be performed via
an upscaling process, such as that used during the Bigfoot
study (Cohen et al., 2003; Heinsch et al., 2006; Turner et al.,
2003a,b). The expense and intensity of such studies, however,
limits our ability to perform such comparisons.

4) Algorithm limitations. Some issues remaining in the ET
algorithm might also contribute to the differences between the
tower ET observations and the ET estimates by the algorithm.
Biophysical parameters, such as CL, VPD_close and VPD_o-
pen, used in the algorithm have the same values for a given
biome type. However, for different species within the same
biome type, the differences in these parameters can be large
(Turner et al., 2003a,b). In addition, we have little knowledge
regarding some parameters (e.g., boundary layer resistance for
soil evaporation) and the mechanisms involved. Therefore,
further study is needed to improve the ET algorithm for some
ecosystems such as those in the arid areas.

5.2. Implementing ET algorithm at the global scale

These initial site-based results indicate that, although current
ET estimates with our Revised RS-PM algorithm may contain
biases when compared with observations, they generally agree
well. The ET estimates driven by the different climate datasets
are consistent at the 19 AmeriFlux sites. This suggests that we
can use global reanalyzed assimilation meteorological data such
as that from the GMAO together with MODIS data to estimate
global ET.

Our Revised RS-PMETalgorithmwas implemented globally
for 2001 at a resolution of 0.05° using the preprocessed MODIS
remote sensing data and the GMAOmeteorological data (Fig. 7).
The spatial pattern is generally reasonable, with a maximum ET
of 1197 mm/yr, an average of 286±237 mm/yr over vegetated
land areas. As expected, tropical forests have the highest ET
values, while dry areas and areas with short growing seasons
have low estimates of ET. The ET for temperate and boreal
forests lies between the two extremes (Fig. 7). Although there are
some uncertainties, the ET magnitudes and spatial pattern of
global ET generally agree with estimates provided in the litera-
ture. Evapotranspiration studies by Bruijnzeel (1990) in humid
tropical forests suggest that the annual evapotranspiration ranges
from 1310 to 1500 mm. Two years of combined field measure-
ments of water vapor exchange over a Bornean tropical rain-
forest by Kumagai et al. (2005) show that the estimated annual
evapotranspiration rates (1545 mm/yr) were at the upper limit of
the range for tropical forests (Bruijnzeel, 1990; Calder et al.,
1986; Leopoldo et al., 1995). Measurements of water vapor
fluxes from September 1, 2003 to August 31, 2004 in a 74-year-
old mixed forest in northern Ontario, Canada, reveal that
the total water loss over the 12-month measurement period was
480±30mm, while total precipitation was 835 mm (Pejam et al.,
2006). In data taken during 1965–1989 at 94 sites representing
11 biomes, Frank and Inouye (1994) estimate that ET ranges
from 164 mm/yr in a hot desert to 1363 mm/yr in a wet tropical
forest. Liski et al. (2003) reported that the ET in boreal and
temperate forests across Europe (34 sites) ranged from 328 to
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654mm,while the average ETwas 466mm for Canada (18 sites)
and 642 mm for the US and Central America (26 sites) for
biomes ranging from arctic tundra to tropical rainforest.

Precipitation is not the input data to the ETalgorithm, so it can
be used to further verify our Revised RS-PM ET product. As
expected, when the annual total Revised RS-PMET is compared
with annual total precipitation (Fig. 8a) from Chen et al. (2002)
and the annual total MODIS GPP (Zhao et al., 2005) (Fig. 8b),
Fig. 9. (a) Global precipitation (precip) in 2001 with a maximum of 7588 mm/yr an
precipitation and annual ET (driven by GMAO meteorological data) in 2001, with a m
are shown in color, and the regions in white are barren or sparsely vegetated areas a
areas with high precipitation and highGPP correspond favorably
with areas with high ET. Where precipitation is high, vegetation
grows well and the resulting MODIS GPP is high. Therefore,
high MODIS GPP should correspond to high MODIS ET
(Korner, 1994; McMurtrie et al., 1992).

To validate the global MODIS ET results, we calculated the
water balance as the difference between annual precipitation
from Chen et al. (2002) and annual MODIS ET (Fig. 9).
d an average of 780±686 mm/yr over land. (b) The difference between annual
aximum of 4476 mm/yr and an average of 586±568 mm/yr. Vegetated regions

nd non-vegetated areas, including water bodies, snow and ice, and urban areas.
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Theoretically, over a relatively long time period, ET should be
less than precipitation (Donohue et al., 2007). Figs. 8a, 9 show
that, annually, ET is less than or equal to precipitation for most
vegetated pixels on the globe. However, for a number of pixels,
ET is greater than precipitation, which may result from:

1) Biases in the GMAO meteorological data. Zhao et al. (2006)
compared observed weather station data and gridded data
interpolated from the observationswith surfacemeteorological
data from three well-documented global reanalyses: GMAO,
European Centre for Medium-Range Weather Forecasts
(ECMWF), and National Centers for Environmental Predic-
tion/National Center for Atmospheric Research (NCEP/
NCAR) reanalysis 1 to evaluate the sensitivity of the
MODIS GPP/NPP to uncertainties in the meteorological
inputs for both the United States and global vegetated areas.
The NCEP/NCAR data tends to overestimate surface solar
radiation, and underestimate both temperature and VPD. The
ECMWF data have the highest accuracy but the radiation is
lower in tropical regions and the accuracy of the GMAO
meteorology lies between theNCEP andECMWF (Zhao et al.,
2006). Global total MODIS GPP and NPP driven by the three
reanalyses datasets show notable differences (N20 Pg C/yr,
average GPP: 109 Pg C/yr and average NPP: 56 Pg C/yr over
2000–2003 byGMAO)with the highest estimates fromNCEP
and the lowest from ECMWF. These results reveal that the
biases in meteorological reanalyses can introduce substantial
error. Since the incoming shortwave radiation controls the
energy available for LE, and there are biases in VPD and
temperature, using any of these datasets can introduce un-
certainty into ET estimations.

2) Biases in monthly precipitation. Chen et al. (2002) obtained
monthly precipitation using gauge observations from over
17,000 stations collected from the Global Historical Clima-
tology Network (GHCN), and the Climate Anomaly
Monitoring System (CAMS) datasets (Chen et al., 2002).
Monthly global precipitation data over land (http://www.cpc.
ncep.noaa.gov/products/global_precip/html/wpage.50yrrec.
html) were reconstructed by interpolating gauge precipitation
anomalies using the optimal interpolation method (Gandin,
1965). Western Europe, India, East Asia, the eastern and
southwestern coastal areas of Australia, the United States,
and some coastal areas of Africa and South America are
covered by relatively dense gauge networks, providing more
accurate data than areas in the Amazon, tropical Africa and
high latitude areas where observations are sparsely distrib-
uted with notable gaps (Fig. 2 in Chen et al., 2002). In
addition, there are uncertainties in gauge-measured daily
precipitation. Yang et al. (2005) analyzed the precipitation at
4802 stations located north of 45 °N and concluded that the
undercatch of gauge-measured precipitation is up to 22 mm/
month in winter, and approximately 10 mm/month during the
summer season due to wind-induced undercatch, wetting
losses and trace precipitation amounts. The uncertainties in
the interpolated data from the scattered observations and the
interpolation procedure caused biases in the annual precip-
itation, which could be a primary reason why annual ET is
larger than the annual precipitation for some areas, especially
in the northern high latitudes (Fig. 9).

3) Irrigation, water infiltration and subsurface runoff. There is
spatial redistribution of water from precipitation as a result of
topography (e.g. Beven et al., 1995; Grayson et al., 1995;
Laurenson & Mein, 1995). For example, ET is higher in arid
Egypt than precipitation due to irrigation of crops using
water from the Nile River, which originates in East Africa.
Irrigation effects on agricultural areas of South America and
the central USA might also be partially responsible for the
negative differences between precipitation and evapotrans-
piration. In addition, Talsma and Gardner (1986) showed
that some Eucalyptus species drew more heavily on stored
soil water (ssw) during the summer of a drought year than the
summers of years with average rainfall, using 200 mm more
ssw than average. Donohue et al. (2007) demonstrate that ET
values can exceed the energy limit for several years of
unexpectedly low runoff which were preceded by moder-
ately dry years in Sphagnum bogs with large water holding
capacities. The observed pattern implies that the recharge/
discharge of these bogs results in relatively large changes in
ssw. Finally, Calder et al. (1997) reported that Eucalyptus
plantations established on former croplands exploited sub-
stantial ssw, resulting in unusually high ET and that ssw
could be up to 50% of precipitation for several years after
planting. These examples demonstrate that vegetation dy-
namics can result in non-steady-state conditions and higher
ET than precipitation, especially after vegetation change,
over periods of up to several years. The longer the period
needed for steady-state conditions, the more possible that ET
might be higher than precipitation and the less useful the
water balance of precipitation minus ET for catchment and
land management applications.

4) Issues with the MODIS ET algorithm itself. There are still
improvements that can be made to the ET algorithm. First, ra
for the plant transpiration should not be constant and rtot for
the soil evaporation should not be a single specified value for
all biome types. In the future, we will estimate ra and rtot as
functions of meteorological data, remote sensing data and
different vegetation types. Second, the surface resistance (rs)
needs to be refined, and multiple-year data at additional flux
towers will be used to validate and refine the algorithm.

6. Conclusions

We have revised the RS-PM ET algorithm by adding vapor
pressure deficit and temperature constraints on stomatal con-
ductance; using LAI as a scalar to estimate canopy conductance
from stomatal conductance; replacing NDVI with EVI and
changing the equation for the calculation of vegetation cover
fraction; and adding a separate soil evaporation component to
ET. The ET estimates from the RS-PM and Revised RS-PM
algorithms were compared with ET observations at 19 Ameri-
Flux eddy flux towers driven by both site-observed daily meteo-
rological data and GMAO reanalysis data. The verification
shows that our Revised RS-PM algorithm improved ET esti-
mates, reducing the 8-day latent heat flux biases from 64.6W/m2

http://www.cpc.ncep.noaa.gov/products/global_precip/html/wpage.50yrrec.html
http://www.cpc.ncep.noaa.gov/products/global_precip/html/wpage.50yrrec.html
http://www.cpc.ncep.noaa.gov/products/global_precip/html/wpage.50yrrec.html
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by RS-PM algorithm to 27.3 W/m2 driven by tower meteoro-
logical data, and from 71.9 W/m2 to 29.5 W/m2 driven by
GMAO meteorological data. The correlation coefficients in-
creased slightly from 0.70 to 0.76 with the use of tower meteo-
rological data.

Daily ET estimates at the tower sites driven by GMAO data
are consistent with those driven by site-based meteorological
data. Due to the inclusion of several different land cover types
and climates, the agreement between the ET estimates from our
Revised RS-PM ET algorithm and tower ET observations im-
plies that our Revised RS-PM ETalgorithm can be implemented
globally.

The global annual ET in 2001 shows reasonable spatial pat-
terns in comparison with spatial annual MODIS GPP, annual
precipitation and other studies, with areas of high ET cor-
responding to high GPP and high precipitation. Based on the
results, our Revised RS-PM ETalgorithm can be applied globally
to generate near-real-time, 8-day and annual ET products, pro-
viding critical information on global terrestrial water and energy
cycles and environmental changes.
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