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MODIS global evapotranspiration (ET) products by Mu et al. [Mu, Q., Heinsch, F. A., Zhao, M., Running, S. W.
(2007). Development of a global evapotranspiration algorithm based on MODIS and global meteorology data.
Remote Sensing of Environment, 111, 519–536. doi: 10.1016/j.rse.2007.04.015] are the first regular 1-km2

land surface ET dataset for the 109.03 Million km2 global vegetated land areas at an 8-day interval. In this
study, we have further improved the ET algorithm in Mu et al. (2007a, hereafter called old algorithm) by 1)
simplifying the calculation of vegetation cover fraction; 2) calculating ET as the sum of daytime and nighttime
components; 3) adding soil heat flux calculation; 4) improving estimates of stomatal conductance,
aerodynamic resistance and boundary layer resistance; 5) separating dry canopy surface from the wet; and
6) dividing soil surface into saturated wet surface and moist surface. We compared the improved algorithm
with the old one both globally and locally at 46 eddy flux towers. The global annual total ET over the vegetated
land surface is 62.8×103 km3, agrees very well with other reported estimates of 65.5×103 km3 over the
terrestrial land surface, which is much higher than 45.8×103 km3 estimated with the old algorithm. For ET
evaluation at eddy flux towers, the improved algorithm reduces mean absolute bias (MAE) of daily ET from
0.39 mm day−1 to 0.33 mm day−1 driven by tower meteorological data, and from 0.40 mm day−1 to
0.31 mm day−1 driven by GMAO data, a global meteorological reanalysis dataset. MAE values by the improved
ET algorithm are 24.6% and 24.1% of the ET measured from towers, within the range (10–30%) of the reported
uncertainties in ET measurements, implying an enhanced accuracy of the improved algorithm. Compared to
the old algorithm, the improved algorithm increases the skill score with tower-driven ET estimates from 0.50
to 0.55, and from 0.46 to 0.53 with GMAO-driven ET. Based on these results, the improved ET algorithm has a
better performance in generating global ET data products, providing critical information on global terrestrial
water and energy cycles and environmental changes.
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1. Introduction

All organisms require water for their survival (Oki & Kanae, 2006).
Unlike most other natural resources, water circulates and forms
closed hydrological cycles. The terrestrial water cycle is of critical
importance to a wide array of Earth system processes. It plays a
central role in climate and meteorology, plant community dynamics,
and carbon and nutrient biogeochemistry (Vörösmarty et al., 1998;
Zhao & Running, 2010). Demand for the world's increasingly scarce
water supply is rising rapidly, challenging its availability for food
production and putting global food security at risk. Agriculture, upon
which a burgeoning population depends for food, is competing with
industrial, household, and environmental uses for this scarce water
supply (Rosegrant et al., 2003; Vörösmarty et al., 2010). The water
withdrawals from the renewable freshwater resources include blue
water from the surface and groundwater as water resources, and
greenwater from the beneficial evapotranspiration (ET) as a loss from
the precipitated water over non-irrigated croplands (Oki & Kanae,
2006). Global climate change will affect precipitation and ET, and
hence influence the renewable freshwater resources. ET is the second
largest component (after precipitation) of the terrestrial water cycle
at the global scale, since ET returns more than 60% of precipitation on
land back to the atmosphere (Korzoun et al., 1978; L'vovich & White,
1990) and thereby conveys an important constraint on water
availability at the land surface. In addition, ET is an important energy
flux since land ET uses up more than half of the total solar energy
absorbed by land surfaces (Trenberth et al., 2009). Accurate
estimation of ET not only meets the growing competition for the
limitedwater supplies and the need to reduce the cost of the irrigation
projects, but also it is essential to projecting potential changes in the
global hydrological cycle under different climate change scenarios
(Teuling et al., 2009).

Remote sensing has long been recognized as the most feasible
means to provide spatially distributed regional ET information on land
surface. Remotely sensed data, especially those from polar-orbiting
satellites, provide temporally and spatially continuous information
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over vegetated surfaces useful for regional measurement and
monitoring of surface biophysical variables affecting ET, including
albedo, biome type and leaf area index (LAI) (Los et al., 2000). The
MODerate Resolution Imaging Spectroradiometer (MODIS) onboard
NASA's Terra and Aqua satellites, provide unprecedented information
regarding vegetation and surface energy (Justice et al., 2002), which
can be used for regional and global scale ET estimation in near real-
time. Three types of methods have been developed to estimate ET
from remote sensing data: (1) empirical/statistical methods which
link measured ET or estimated ET to large scales with remotely sensed
vegetation indices (Glenn, Huete, et al., 2008a; Glenn, Morino, et al.,
2008b; Jung et al., 2010; Nagler et al., 2005); (2) physical models that
calculate ET as the residual of surface energy balance (SEB) through
remotely sensed thermal infrared data (Allen et al., 2007; Bastiaans-
sen et al., 2005; Kustas & Anderson, 2009; Overgaard et al., 2006); (3)
and other physical models such as using the Penman–Monteith logic
(Monteith, 1965) to calculate ET (Cleugh et al., 2007; Mu et al.,
2007a). We only describe the physical models in this article since we
focus on the dynamics of ET process.

For SEB-based physical ET models, thermal-IR based land surface
temperature (LST) is a critical remote sensing variable used in these
satellite based SEB models (Bastiaanssen et al., 1998a; Bastiaanssen et
al., 1998b; Nishida et al., 2003; Su, 2002), yet there are some
disadvantages when applying LST to ET estimations at the global scale.
Firstly, Hope et al. (2005) found that the relationship between thermal-
IR based LST and NDVI at high-latitudes is opposite to that of mid-
latitude regions because arctic tundra ecosystems characterized by
permafrost provide a large sink for energy below the ground surface.
Secondly, sensible heat flux (H) is estimated using the aerodynamic
surface–air temperature gradient (or combination of gradients) and
aerodynamic resistance, where generally LST has been used as a
surrogate for aerodynamic temperature, which is the main reason that
accurate estimates ofH are very difficult to achieve (Gowdaet al., 2008).
Thirdly, among other complications, ET can often exceed net incoming
radiation at a given time or place, due to advection of H from the
surrounding landscape (Glenn et al., 2007). Therefore, it is common for
estimated ET to incur 46% (Su, 2002) or greater than 50% error owing to
the use of LST in classical sensible heat flux formulation with an
aerodynamic resistance (Stewart et al., 1994).

To deal with the problems in the SEB models, Cleugh et al. (2007)
developed a remotely sensed ET model using a Penman–Monteith
approach driven by MODIS derived vegetation data and daily surface
meteorological inputs including incoming solar radiation, surface air
temperature and Vapor Pressure Deficit (VPD, the difference between
saturated air vapor pressure of a given air temperature and air vapor
pressure). Mu et al. (2007a) further modified Cleugh et al.'s model to
estimate the global ET (RS-ET). The RS-ET algorithm uses MODIS land
cover, albedo, leaf area index (LAI), and Enhanced Vegetation Index
(EVI) and a daily meteorological reanalysis data set from NASA's
Global Modeling and Assimilation Office (GMAO, v. 4.0.0, 2004) as
inputs for regional and global ETmapping andmonitoring. Fisher et al.
(2008) used Priestley-Taylor method (Priestley and Taylor, 1972) to
estimate global ET using AVHRR/NOAA data. Based onMu et al., 2007a
RS-ET model, Zhang et al. (2009) developed a model to estimate ET
using remotely sensed Normalized Difference Vegetation Index
(NDVI) data; Yuan et al. (2010) modified Mu et al., 2007a RS-ET
model by adding the constraint of air temperature to stomatal
conductance and calculating the vegetation cover fraction using LAI
instead of EVI.

In this paper, we identified problems in the ET algorithm in Mu
et al., 2007a paper (hereafter called old algorithm) and solved the
problems by improving the old algorithm. In the old algorithm, ET was
calculated as the sum of the evaporation from moist soil and the
transpiration from the vegetation during daytime. Nighttime ET was
assumed to be small and negligible. Soil heat flux (G) was assumed to
be zero. For daily calculations, G might be ignored (Gavilána et al.,
2007). G is a relatively small component of the surface energy budget
relative to sensible and latent energy fluxes for most forest and
grassland biomes (Da Rocha et al., 2004; Ogée et al., 2001; Tanaka
et al., 2008) and is generally less than 20% of net incoming radiation
for the forest and grassland sites from this investigation (e.g. Weber
et al., 2007; Granger, http://www.taiga.net/wolfcreek/Proceed-
ings_04.pdf). However, the assumption of negligible G in the old
algorithm is a significant concern for tundra. In the Arctic–Boreal
regions, G can be a substantial amount of net radiation, especially
early in the growing season. The assumption of a negligible G may be
valid in mid-latitude regions on a daily basis, however in these areas a
substantial portion of net radiation melts ice in the active layer,
especially early in the growing season (Engstrom et al., 2006;
Harazono et al., 1995). The old algorithm neglected the evaporation
from the intercepted precipitation from plant canopy. After the event
of precipitation, part of the vegetation and soil surface is covered by
water. The evaporation from the saturated soil surface is much higher
than the evaporation from the unsaturated soil surface, and the
evaporation from the intercepted water by canopy is different from
canopy transpiration. In this study, we have improved the old ET
algorithm by 1) simplifying the calculation of vegetation cover
fraction; 2) calculating ET as the sum of daytime and nighttime
components; 3) calculating soil heat flux; 4) improving the methods
to estimate stomatal conductance, aerodynamic resistance and
boundary layer resistance; 5) separating dry canopy surface from
the wet, and hence canopy water loss includes evaporation from the
wet canopy surface and transpiration from the dry surface; and 6)
dividing soil surface into saturated wet surface and moist surface, and
thus soil evaporation includes potential evaporation from the
saturated wet surface and actual evaporation from the moist surface.
Description of the improvements is detailed in Section 2. We
parameterized the improved ET algorithm by using the tower GPP,
ET data, the global MODIS GPP and Chen et al.'s global precipitation
data (Chen et al., 2002), which is described in Section 5. To examine
the performances of the improved ET algorithm, we compared the
global ET estimated by the improved ET algorithmwith that by the old
algorithm and other published studies; we also compared both the old
and the improved ET estimates with level 4 ET measured at 46
AmeriFlux sites.

2. Improvements on the MODIS ET algorithm

Terrestrial ET includes evaporation from wet and moist soil,
evaporation from rain water intercepted by the canopy before it
reaches the ground, the sublimation of water vapor from ice and snow
and the transpiration through stomata on plant leaves and stems.
Both the old and improved ET algorithms are based on the Penman–
Monteith (P–M) equation (Monteith, 1965):

λE =
s × A + ρ × Cp × esat−eð Þ = ra

s + γ × 1 + rs = rað Þ ð1Þ

where λE is the latent heat flux and λ is the latent heat of evaporation;
s=d(esat)/dT, the slope of the curve relating saturated water vapor
pressure (esat) to temperature; A is available energy partitioned
between sensible heat, latent heat and soil heat fluxes on land surface;
ρ is air density; Cp is the specific heat capacity of air; and ra is the
aerodynamic resistance. The psychrometric constant γ is given by
γ=Cp×Pa×Ma /(λ×Mw), whereMa andMw are themolecular masses
of dry air and wet air, respectively, and Pa is atmospheric pressure
(Maidment, 1993). Surface resistance (rs) is an effective resistance to
evaporation from land surface and transpiration from the plant
canopy.

In the old algorithm, ET was calculated as the sum of the
evaporation frommoist soil and the transpiration from the vegetation
during daytime. In the improved algorithm, not only were the
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evaporation from the wet soil and the intercepted canopy precipita-
tion included in ET estimates, but also the nighttime ETwas calculated
as part of the ET. Other improvements of the ET algorithm such as the
vegetation cover fraction, the stomatal conductance, the aerodynamic
conductance, etc., weremade in the improved ET algorithm as follows.

2.1. Vegetation cover fraction

Net radiation is partitioned between the canopy and soil surface
based on vegetation cover fraction (Fc). Previously, Fc was calculated
as in Eq. (2) (Mu et al., 2007a),

Fc =
EVI−EVImin

EVImax−EVImin
ð2Þ

where EVImin and EVImax were the minimum and maximum EVI
during the study period, set as constants of 0.95 and 0.05 (Mu et al.,
2007a), respectively. In the improved algorithm, to reduce numbers of
inputs from MODIS datasets and to simplify the procedure and
algorithm, we use 8-day 1-km2 MOD15A2 FPAR (the Fraction of
Absorbed Photosynthetically Active Radiation) as a surrogate of
vegetation cover fraction (Los et al., 2000) since FPAR and LAI are
from a single MODIS product.

Fc = FPAR ð3Þ

2.2. Daytime and nighttime ET

Daily ET should be the sum of daytime and nighttime ET.
Previously, the nighttime ET was neglected since most of ET occurs
during daytime. In the improved algorithm, we added the nighttime
ET. To get nighttime average air temperature (Tnight), we assume that
daily average air temperature (Tavg) is the average of daytime air
temperature (Tday) and Tnight.

Tnight = 2:0 × Tavg−Tday ð4Þ

The net incoming solar radiation at night is assumed to be zero.
Based on the optimization theory, stomata will close at night to prevent
water loss when there is no opportunity for carbon gain (Dawson et al.,
2007). In the improved ET algorithm, at night, the stomata are assumed
to close completely and the plant transpiration through stomata is zero,
except for the transpiration through leaf boundary-layer and leaf
cuticles (more details in Section 2.6). Both nighttime and daytime use
the same ET algorithm except that different values at daytime and
nighttime are used for the same variable.

2.3. Soil heat flux

In both the old and new algorithms, the net incoming radiation to
the land surface (Rnet) is calculated as the Eqs. (12) and (13) in Cleugh
et al.'s, 2007 paper.

Rnet = 1−αð Þ × Rs↓ + εa−εsð Þ × σ × 273:15 + Tð Þ4

εa = 1−0:26expð�7:77×10�4×T2Þ

εs = 0:97

ð5Þ

whereα is MODIS albedo, Rs ↓ is the downward shortwave radiation, εs
is surface emissivity, εa is atmospheric emissivity, and T is air
temperature in °C.

In the old algorithm, the soil heat flux (G) was directly extracted
from the total net incoming radiation (Rnet) to get the net radiation
partitioned in the ET process

A = Rnet−G ð6Þ
where (Rnet) is the net incoming radiation received by land surface
and A is the part of (Rnet) partitioned between latent heat flux and
sensible heat flux.

In the improved algorithm, there will be no soil heat flux
interaction between the soil and atmosphere if the ground is 100%
covered with vegetation. Energy received by soil is the difference
between the radiation partitioned on the soil surface and soil heat
flux (G).

A = Rnet
Ac = Fc × A
ASOIL = 1−Fcð Þ × A−G

ð7Þ

A is available energy partitioned between sensible heat, latent heat
and soil heat fluxes on land surface; AC is the part of A allocated to the
canopy and ASOIL is the part of A partitioned on the soil surface. In
1986, Clothier et al. (1986) proposed a method to estimate soil heat
flux using remote sensing data as

GSOIL = 0:295−0:0133B2=B1ð Þ × Ai ð8Þ

where B1 and B2 are the bandpasses of SPOT filters 610–680 nm,
and 790–890 nm, Ai is daytime or nighttime available energy
partitioned between latent heat and sensible heat fluxes. Kustas
and Daughtry (1990) further improved the method using B2/B1 and
NDVI′.

GSOIL = 0:294−0:164B2=B1ð Þ × Ai

NDVI′ = B2−B1ð Þ
�

B1+B2ð Þ
ð9Þ

GSOIL = 0:325−0:208 × NDVI′
� �

× Ai ð10Þ

Daughtry et al. (1990) compared the soil heat flux using different
methods with observed data and found that the estimates using NDVI′
in Eq. 10 had the lowest absolute error (13%) with a small positive
bias. Jacobsen and Hansen (1999) proposed some other methods to
estimate GSOIL as,

GSOIL = 4:73 × Ti−20:87
GSOIL = −0:27 × NDVI + 0:39ð Þ × Ai

ð11Þ

NDVI = RNIR−RREDð Þ= RNIR + RREDð Þ ð12Þ

GSOIL = −0:025 × RNIR = RRED + 0:35ð Þ × Ai ð13Þ

where Ti means daytime or nighttime average temperature in °C.
We adopted Eqs. (11) and (12) globally with some constraints. At

the extremely hot or cold places or when the difference between
daytime and nighttime temperature is low (b5 °C), there is no soil
heat flux. The soil heat flux is set to be zero in the old version, now it is
estimated as

Gsoil =

(
4:73 × Ti−20:87 Tminclose≤Tannavgb25°C; Tday−Tnight≥5°C
0:0 Tannavg≥25°C or TannavgbTminclose or Tday−Tnightb5°C
0:39 � Ai abs Gð Þ N 0:39 × abs Aið Þ

G = Gsoil × 1−Fcð Þ
ð14Þ

in the improved algorithm, where Gsoil stands for the soil heat flux
when FC=0;Tannavg is annual average daily temperature, and
Tminclose is the threshold value below which the stomata will close
completely and halt plant transpiration (Mu et al., 2007b; Running
et al., 2004).



Fig. 1. Flowchart of the improved MODIS Evapotranspiration (ET) algorithm. LAI: leaf area index; FPAR: Fraction of photosynthetically active radiation.

1784 Q. Mu et al. / Remote Sensing of Environment 115 (2011) 1781–1800
2.4. Wet surface fraction

In the old algorithm, there was no difference between the ET on
the saturated and moist bare soil surface, and there was no
evaporation but transpiration on the canopy surface (Fig. 1 in Mu et
al., 2007a). In the improved ET algorithm, ET is the sum of water lost
to the atmosphere from soil surface evaporation, canopy evaporation
from the water intercepted by the canopy, and transpiration from
plant tissues (Fig. 1). The land surface is covered by the plant and the
bare soil surface, and percentage of the two components is
determined by FC. Both the canopy and the soil surface are partly
covered by water under certain conditions. The water cover
fraction (Fwet) is taken from the Fisher et al. (2008) ET model,
modified to be constrained to zero when relative humidity (RH) is
less than 70%:

Fwet =
0:0 RH b 70%
RH4 70% ≤ RH ≤ 100%

�
ð15Þ

where RH is relative humidity (Fisher et al., 2008). When RH is
less than 70%, 0% of the surface is covered by water. For the wet
canopy and wet soil surface, the water evaporation is calculated
as the potential evaporation as described in Sections 2.5 and
2.7.

2.5. Evaporation from wet canopy surface

Evaporation of precipitation intercepted by the canopy accounts
for a substantial amount of upward water flux in ecosystems with
high LAI. For the improved algorithm, when the vegetation is covered
with water (i.e., Fwet is not zero), water evaporation from the wet
canopy surface will occur. ET from the vegetation consists of the
evaporation from thewet canopy surface and transpiration from plant
tissue, whose rates are regulated by aerodynamics resistance and
surface resistance.

The aerodynamic resistance (rhrc, s m−1) and wet canopy
resistance (rvc, s m−1) to evaporated water on the wet canopy
surface are calculated as

rhc =
1:0

glPsh × LAI × Fwet

rrc =
ρ × Cp

4:0 × σ × T3
i

rhrc =
rhc × rrc
rhc + rrc

rvc =
1:0

glPePwv × LAI × Fwet

ð16Þ

where rhc (s m−1) is the wet canopy resistance to sensible heat, rrc
(s m−1) is the resistance to radiative heat transfer through air; gl_sh
(s m−1) is leaf conductance to sensible heat per unit LAI, gl_e_wv
(m s−1) is leaf conductance to evaporated water vapor per unit LAI,
σ (W m−2 K−4) is Stefan–Boltzmann constant. Following Biome-
BGC model (Thornton, 1998) with revision to account for wet
canopy, the evaporation on wet canopy surface is calculated as

λEwetPC =
s × AC × FC + ρ × Cp × esat−eð Þ × FC = rhrc

� �
× Fwet

s +
Pa × Cp × rvc
λ × ε × rhrc

ð17Þ

where the resistance to latent heat transfer (rvc) is the sum of
aerodynamic resistance (rhrc) and surface resistance (rs) in Eq. (1).



Table 1
The Biome Properties Look-Up Table (BPLUT) for MODIS ET. ENF: evergreen needleleaf forest; EBF: evergreen broadleaf forest; DNF: deciduous needleleaf forest; DBF: deciduous
broadleaf forest; MF: mixed forest; WL: woody savannas; SV: savannas; CSH: closed shrubland; OSH: open shrubland; Grass: grassland, urban and built-up, barren or sparsely
vegetated; Crop: cropland.

Parameter ENF EBF DNF DBF MF CSH OSH WL SV Grass Crop

Tmin_open (°C) 8.31 9.09 10.44 9.94 9.50 8.61 8.80 11.39 11.39 12.02 12.02
Tmin_close (°C) −8.00 −8.00 −8.00 −6.00 −7.00 −8.00 −8.00 −8.00 −8.00 −8.00 −8.00
VPD_close (Pa) 3000 4000 3500 2900 2900 4300 4400 3500 3600 4200 4500
VPD_open (Pa) 650 1000 650 650 650 650 650 650 650 650 650
gl_sh (m s−1) 0.04 0.01 0.04 0.01 0.04 0.04 0.04 0.08 0.08 0.02 0.02
gl_e_wv (m s−1) 0.04 0.01 0.04 0.01 0.04 0.04 0.04 0.08 0.08 0.02 0.02
Cl (m/s) 0.0032 0.0025 0.0032 0.0028 0.0025 0.0065 0.0065 0.0065 0.0065 0.0070 0.0070
RBL_MIN (s m−1) 65.0 70.0 65.0 65.0 65.0 20.0 20.0 25.0 25.0 20.0 20.0
RBL_MAX (s m−1) 95.0 100.0 95.0 100.0 95.0 55.0 55.0 45.0 45.0 50.0 50.0

Table 2
Other parameter values as used in the improved ET algorithm.

LRSTD

(K m−1)
TSTD
(K)

GSTD

(m s−2)
RR
(m3 Pa mol−1 K−1)

MA
(kg mol−1)

PSTD
(Pa)

0.0065 288.15 9.80665 8.3143 28.9644e-3 101,325.0
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2.6. Plant transpiration

2.6.1. Surface conductance to transpiration
Plant transpiration occurs not only during daytime but also at

nighttime. Since most of the transpiration occurs at daytime, the
nighttime transpiration was neglected in the old algorithm. In the
improved algorithm, both the daytime and night time transpiration is
included for the calculation of transpiration. For the daytime
transpiration, the stomatal conductance estimation has been im-
proved. In the old algorithm, surface conductance (CC) was estimated
by using LAI to scale stomatal conductance (Cs) from leaf level up to
canopy level (Landsberg & Gower, 1997),

CS = CL × m Tminð Þ × m VPDð Þ
CC = CS × LAI

ð18Þ

where CL is the mean potential stomatal conductance per unit leaf area,
m(Tmin) is a multiplier that limits potential stomatal conductance by
minimum air temperatures (Tmin), and m(VPD) is a multiplier used to
reduce the potential stomatal conductance when VPD (difference
between esat and e) is high enough to reduce canopy conductance
(Mu et al., 2007a; Zhao et al., 2005). In the case of plant transpiration,
surface conductance is equivalent to the canopy conductance (CC), and
hence surface resistance (rs) is the inverse of canopy conductance (CC).

In the old algorithm, CL was a constant for all biome types. In the
improved algorithm, CL is set differently for different biomes as shown
in Table 1 (Kelliher et al., 1995; Schulze et al., 1994; White et al.,
2000). In the improved algorithm, the way to calculate CC has been
revised. Canopy conductance to transpired water vapor per unit LAI is
derived from stomatal and cuticular conductances in parallel with
each other, and both in series with leaf boundary layer conductance
(Running & Kimball, 2005; Thornton, 1998).

rcorr =
1:0

101300
Pa

×
Ti + 273:15

293:15

� 	1:75

GS day1 = CL × m Tminð Þ × m VPDð Þ × rcorr
GS night1 = 0:0

GCU = g cu × rcorr
GS2 = gl sh

CC i =

(
GS2 × GS i1 + GCUð Þ
GS i1 + GS2 + GCU

× LAI × 1:0−Fwetð Þ LAI N 0:0; 1:0−Fwetð Þ N 0:0ð Þ

0:0 LAI = 0:0; 1:0−Fwetð Þ = 0:0ð Þ

rs i =
1

CC i



ð19Þ

where the subscript i means the variable value at daytime and
nighttime; GS_day1 and GS_night1 are daytime and nighttime stomatal
conductance, respectively; GCU is leaf cuticular conductance; GS2 is
leaf boundary-layer conductance; g_cu is cuticular conductance per
unit LAI, set as a constant value of 0.00001 (m s−1) for all biomes;
gl_sh is leaf conductance to sensible heat per unit LAI, which is a
constant value for each given biome (Table 1). rs is the dry canopy
surface resistance to transpiration from the plant. Instead of setting
the atmospheric pressure (Pa) as a constant value as in the old
algorithm, Pa is calculated as a function of the elevation (Elev)
(Thornton, 1998)

t1 = 1:0− LRSTD × Elev
TSTD

t2 =
GSTD

LRSTD ×
RR
MA

Pa = PSTD × tt21

ð20Þ

where LRSTD, TSTD, GSTD, RR, MA and PSTD are constant values as listed
in Table 2. LRSTD (K m−1) is standard temperature lapse rate; TSTD (K)
is standard temperature at 0.0 m elevation; GSTD (m s−2) is standard
gravitational acceleration; RR (m3 Pa mol−1 K−1) is gas law con-
stant; MA (kg mol−1) is molecular weight of air and PSTD (Pa) is
standard pressure at 0.0 m elevation.

Based on the optimization theory, stomata will close at night to
prevent water loss when there is no opportunity for carbon gain
(Dawson et al., 2007). In the improved ET algorithm, the stomata are
assumed to close completely at night, resulting in GS1=0.0.

2.6.2. Aerodynamic resistance
The transfer of heat and water vapor from the dry canopy surface

into the air above the canopy is determined by the aerodynamic
resistance (ra), which was a constant of 20 s m−1 in the old
algorithm. In the improved algorithm, ra is calculated as a parallel
resistance to convective (rh) and radiative (rr) heat transfer
following Biome-BGC model (Thornton, 1998),

ra =
rh × rr
rh + rr

rh =
1:0
gl bl

rr =
ρ × Cp

4:0 × σ × T3
i

ð21Þ

where gl_bl (m s−1) is leaf-scale boundary layer conductance,
whose value is equal to leaf conductance to sensible heat per unit
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LAI (gl_sh (m s−1) as in Section 2.5), and σ (W m−2 K−4) is Stefan–
Boltzmann constant.

2.6.3. Plant transpiration
Finally, the plant transpiration (λEtrans) is calculated as

λEtrans =
s × AC × FC + ρ × Cp × esat−eð Þ × FC = ra

� �
× 1−Fwetð Þ

s + γ × 1 + rs = rað Þ

ð22Þ

where ra is the aerodynamic resistance calculated from Eq. (21).
In addition, to monitor environmental water stresses and

droughts, we also calculate potential surface ET (see Section 2.8).
The potential plant transpiration (λEPOT_trans) is calculated following
the Priestley-Taylor (Priestley and Taylor, 1972).

λEpot trans =
α × s × AC × 1−Fwetð Þ

s + γ

α = 1:26
ð23Þ

2.7. Evaporation from soil surface

The soil surface is divided into the saturated surface and the
moist surface by Fwet. The soil evaporation includes the potential
evaporation from the saturated soil surface and evaporation from
the moist soil surface. The total aerodynamic resistance to vapor
transport (rtot) is the sum of surface resistance (rs) and the
aerodynamic resistance for vapor transport (rv) such that rtot= rv
+ rs (Mu et al., 2007a; van de Griend, 1994). In the old version, a
constant rtotc (107 s m−1) for rtot was assumed globally based on
observations of the soil surface in tiger-bush in southwest Niger
(Wallace & Holwill, 1997), but it was corrected (rcorr) for atmospheric
temperature (Ti) and pressure (Pa) (Jones, 1992) with standard
conditions assumed to be Ti=20 °C and Pa=101300 Pa.

rcorr =
1:0

101300
Pa

×
Ti + 273:15

293:15

� 	1:75

rtot = rtotc × rcorr
rtotc = 107:0

ð24Þ

We assume that rv (s m−1) is equal to the aerodynamic resistance
(ra: s m−1) in Eq. (1) since the values of rv and ra are usually very close
(van de Griend, 1994). The aerodynamic resistance at the soil surface
(ras) is parallel to both the resistance to convective heat transfer (rhs:
s m−1) and the resistance to radiative heat transfer (rrs: s m−1)
(Choudhury & DiGirolamo, 1998), such that

ras =
rhs × rrs
rhs + rrs

rrs =
ρ × Cp

4:0 × σ × T3
i

rhs = rtot

ð25Þ

The rhs is assumed to be equal to boundary layer resistance, which is
calculated in the same way as total aerodynamic resistance (rtot) in
Eq. (24) (Thornton, 1998) except that, in the improved algorithm, rtotc is
not constant. For a given biome type, there is a maximum (rblmax) and a
minimum value (rblmin) for rtotc, and rtotc is a function of VPD.

rtotc =

rblmax VPD≤VPDopen

rblmax−
rblmax−rblminð Þ × VPDclose−VPDð Þ

VPDclose−VPDopen

� � VPDopenbVPDbVPDclose

rblmin VPD≥VPDclose

8>>>>><
>>>>>:

ð26Þ
The values of rblmax and rblmin, VPDopen (when there is no water

stress on transpiration) and VPDclose (when water stress causes
stomata to close almost completely, halting plant transpiration) are
different for different biomes and are listed in Table 1.

The actual soil evaporation (λESOIL) is calculated in Eq. (27) using
potential soil evaporation (λESOIL _ POT) and soil moisture constraint
function in the Fisher et al. (2008) ET model. This function is based
on the complementary hypothesis (Bouchet, 1963), which defines
land–atmosphere interactions from air VPD and relative humidity
(RH, %).

λEwet SOIL =
s × ASOIL + ρ × Cp × 1:0−FCð Þ × VPD= ras

� �
× Fwet

s + γ × rtot = ras

λESOILPOT =
s × ASOIL + ρ × Cp × 1:0−FCð Þ × VPD = ras

� �
× 1:0−Fwetð Þ

s + γ × rtot = ras

λESOIL = λEwet SOIL + λESOILPOT ×
RH
100

� 	VPD=β

ð27Þ

where β was set as 100 in the old algorithm, and is revised as 200 in
the improved algorithm.

2.8. Total daily evapotranspiration

In the improved algorithm, the total daily ET is the sum of
evaporation from the wet canopy surface, the transpiration from
the dry canopy surface and the evaporation from the soil surface.
The total daily ET and potential ET (λEPOT) are calculated in
Eq. (28).

λE = λEwet C + λEtrans + λESOIL
λEPOT = λEwet C + λEPOT trans + λEwet SOIL + λESOILPOT

ð28Þ

Combination of ET with the potential ET can determine environ-
mental water stress and detect the intensity of drought.

3. Eddy covariance flux towers

The eddy covariance technique is a widely used and accepted
method to measure ecosystem-scale mass and energy fluxes. The
AmeriFlux network was established in 1996, providing continuous
measurements of ecosystem level exchanges of CO2, water, energy and
momentum spanning diurnal, synoptic, seasonal, and interannual
time scales and is currently composed of sites from North America,
CentralAmerica, andSouthAmerica (http://public.ornl.gov/ameriflux/).
AmeriFlux is part of a “network of regional networks” (FLUXNET)
including more than 500 tower sites from about 30 regional
networks across five continents, providing half-hourly to hourly
measurements of carbon dioxide, water vapor, and energy exchanges
between terrestrial ecosystems and the atmosphere across a diverse
range of ecosystems and climates on a long-term basis (Baldocchi,
2008). The insights and constraints provided by the simultaneous
measurement of these fluxes and their corresponding scalar fields
ensure that Fluxnet provides an excellent data set for land surfacemodel
development and testing.

http://public.ornl.gov/ameriflux/
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We obtained the level 4 measured meteorological data and latent
heat flux (LE) data at 72 AmeriFlux eddy covariance towers to test the
performance of the improved and old algorithms. To ensure a reliable
comparison, first, 51 towers were left after we excluded those towers
with actual vegetation type different fromMOD12 land cover type 2 at
any of the surrounding 3×31-km2 pixels. Then we further excluded
those towers with fewer than half a year of measurements during
2000–2006. As a result, there are 46 AmeriFlux eddy covariance tower
sites involved in the evaluation of the algorithms. The tower
measured ET in water depth was calculated from tower measured
LE data in following equation,

ET =
LE
λ

ð29Þ

where λ is the latent heat of vaporization (J kg−1). The old and
improved ET algorithms were tested at these 46 AmeriFlux eddy
covariance tower sites (Table 4, Fig. 2) with available level 4 ET
measurements over 2000–2006. These 46flux towers cover nine typical
land cover types and awide range of climates. The nine land cover types
include evergreen needleleaf forest (ENF), evergreen broadleaf forest
(EBF), deciduous broadleaf forest (DBF), mixed forest (MF), open
shrublands (OSH), close shrublands (CSH), woody savannas (WL),
grasslands (Grass), and croplands (Crop).

TheAmeriFlux towerdata are givenevery30 min.When thenumber
(N) of the reliable 30-minutemeasurements is no less than 40 a day, the
daily average values of the incoming solar radiation (SWrad), air
temperature (Tavg), VPD, and LE are the averages of these measure-
ments. For each30-minute timeperiod, ET (mm/30 min) is calculated as

λ = 2:501−0:002361 × Tnð Þ × 106

ETn =
LEn × 60:0 × 30:0

λ

ð30Þ

where n is the nth 30-minute observation of each day, λ is calculated
using the equation in Maidment's book (Maidment, 1993). When the
number of the reliable 30-minute measurements (N) of both LE and T
are no less than 40, the daily total ET is calculated as

ET =
∑N

n = 1ETn × 48
N

ð31Þ
Fig. 2. Distribution of the 46 AmeriFlux eddy flux towers used for validation of the
improved ET algorithm.
If N is less than 40, the daily measurements are set as fill value. The
daily maximum and minimum air temperature are obtained through
the process when calculating the daily average air temperature.

The daytime and nighttime are distinguished by SWrad. If
SWradN10.0 (W m−2), it's daytime, otherwise, nighttime. The
measured daytime VPD (VPDday) and air temperature (Tday), and
nighttime VPD (VPDnight) and air temperature (Tnight) are the
averages over daytime and nighttime. When there are fewer than 20
reliable measurements during daytime or nighttime, both daytime
and nighttime values are set as fill value.

4. Data and methods

4.1. Input datasets

InMu et al., 2007a paper, the performance of the old algorithmwas
tested at 19 AmeriFlux tower sites using two different meteorological
datasets in 2001: (1) aggregated daily meteorological data from the
half-hour measurements at flux tower sites and (2) the global GMAO
meteorological data at 1.00°×1.25° resolution. The input albedo was
version 4 0.05-degree CMG albedo. In this study, both old and
improved algorithms were driven by the two sets of meteorological
data and the ET estimates were compared with the level 4 measured
ET at 46 AmeriFlux tower sites.

The input MODIS data to the improved algorithm include 1) global
1-km2 Collection 4 MODIS land cover type 2 (MOD12Q1) (Friedl et al.,
2002); 2) global 1-km2 MODIS Collection 5 FPAR/LAI (MOD15A2)
(Myneni et al., 2002); and 3) Collection 4 0.05-degree CMG MODIS
albedo (the 10th band of the White-Sky-Albedo from MOD43C1) (Jin
et al., 2003; Salomon et al., 2006; Schaaf et al., 2002). Different from
users' expectation, the Collection 5 MODIS FPAR/LAI is being
generated with a frozen version of the Colleciton 4 instead of the
Colleciton 5 MOD12Q1 land cover as an input by MODIS Adaptive
Processing System (MODAPS) at NASA. Due to the limited resources,
the climate model grid (CMG, 0.05° resolution) Collection 4 MODIS
albedo is used for our MODIS ET because there is no CMG Collection 5
MOD43C1.

4.2. Pre-processing global input data

4.2.1. Spatially interpolating GMAO reanalysis data
The resolution for GMAO (1.00°×1.25°) meteorological data is too

coarse for a 1-km2 MODIS pixel. Zhao et al. (2005) found that, in the
Collection 4 MODIS GPP/NPP algorithm (MOD17), each 1-km2 pixel
falling into the same 1.00°×1.25° GMAO grid cell inherited the same
meteorological data, creating a noticeable GMAO footprint (Fig. 1a and
c in Zhao et al., 2005). Such treatment may be acceptable on a global or
regional scale, but it can lead to large inaccuracies at the local scale,
especially for terrain with topographical variation or located in regions
with steep climatic gradients. To enhance the meteorological inputs,
Zhao et al. (2005) have non-linearly interpolated the coarse resolution
GMAO data to the 1-km2 MODIS pixel level based on the four GMAO
cells surrounding a given pixel. Theoretically, this GMAO spatial
interpolation improves the accuracy of meteorological data for each
1-km2 pixel because it removes the abrupt changes from one side of a
GMAO boundary to the other. In addition, for most World Meteoro-
logical Organization (WMO) stations, spatial interpolation reduced the
root mean square error (RMSE) and increased the correlation between
the GMAO data and the observed WMO daily weather data for 2000–
2003, suggesting that the non-linear spatial interpolation considerably
improves GMAO inputs. These interpolated GMAO data are, therefore,
used in our calculations of ET.

4.2.2. Temporally interpolating MODIS data with bad QC or missing data
The 8-day MOD15A2 LAI/FPAR (Myneni et al., 2002), 16-day

MOD43C1 albedo and MODIS EVI (MOD13A2) (Huete et al., 2002)

image of Fig.�2


Table 3
The tower measured annual Gross Primary Production (GPP), tower measured annual Evapotranspiration (ET) summed over all the available days divided by the number of years
(≤365 days/year), and Water Use Efficiency (WUE) calculated from Eq. (32) averaged over all the towers for each vegetation type; the annual MODIS GPP averaged over each
vegetation type; the expectedMODIS ET as calculated from Eq. (33); the actual average annual MODIS ET over each vegetation type. ENF: evergreen needleleaf forest; EBF: evergreen
broadleaf forest; DNF: deciduous needleleaf forest; DBF: deciduous broadleaf forest; MF: mixed forest; WL: woody savannas; SV: savannas; CSH: closed shrubland; OSH: open
shrubland; Grass: grassland, urban and built-up, barren or sparsely vegetated; Crop: cropland. N/A means that no data is available.

LC Tower annual GPP
(g C m–2 yr–1)

Tower annual ET
(mm yr–1)

Annual WUE
(g C mm–1 m–2)

Annual MODIS GPP
(g C yr–1)

Expected annual MODIS ET
(mm yr–1)

Actual MODIS ET
(mm yr–1)

ENF 978.98 423.64 2.42 876.78 362.89 301.01
EBF 2781.55 1123.03 2.51 2698.53 1073.96 1180.16
DNF N/A N/A N/A 727.00 N/A 334.57
DBF 1303.88 449.44 3.01 1340.12 444.94 533.47
MF 911.17 332.88 2.84 1133.64 398.60 488.12
CSH 909.51 484.82 1.80 811.91 451.88 333.31
OSH 193.60 160.2 1.35 308.79 229.04 272.34
WL 625.81 353.39 1.70 1368.58 805.20 925.62
SV N/A N/A N/A 1209.21 N/A 749.52
Grass 645.68 417.06 1.46 393.09 269.71 352.65
Crop 1089.70 536.79 1.97 883.91 447.82 472.84
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contain some cloud-contaminated or missing data (Hill et al., 2006).
We temporally filled the missing or unreliable LAI/FPAR, and EVI at
each 1-km2 MODIS pixel based on their corresponding quality
assessment data fields as proposed by Zhao et al. (2005). The
unreliable CMG MOD43C1 albedo were filled based on the quality
control provided with the data. The process entails two steps (see
Fig. 5 in Zhao et al., 2005). If the first (or last) 8-day LAI/FPAR (16-
day EVI and MOD43C1 albedo) in one year is unreliable or missing, it
will be replaced by the closest reliable 8-day (16-day) value. This
step ensures that the second step can be performed in which other
unreliable LAI/FPAR (EVI, albedo) will be replaced by linear
interpolation of the nearest reliable values prior to and after the
missing data point.

4.3. Input data for 0.05-degree global MODIS ET data

Since we have the global ET data with the old algorithm at 0.05-
degree resolution over 2000–2006, we only compared the perfor-
mances of the old and new MODIS ET algorithms at 0.05-degree. The
input data for the global ET include the 1.00°×1.25° GMAO
meteorological data, and the MODIS data as outlined in Section 4.1
over 2000–2006. We used the same method as in Section 4.2.2 to
interpolate GMAO data to 0.05° resolution. Both the old and the
improved ET algorithms were used to get the global ET estimates at
the 0.05° resolution. We filled the unreliable 1-km2 MODIS input LAI/
FPAR and EVI data using the method as mentioned in Section 4.2
(Zhao et al., 2005). The enhanced 1-km2 MODIS data were aggregated
into 25-km2 by averaging pixels in a 6 by 6 window and further
reprojected the Sinusoidal data to 0.05° in geographic projection. The
unreliable values in 0.05° MODIS albedo were temporally filled in the
same way as in Section 4.2. The 0.05° MODIS land cover type data was
generated by choosing the dominant land cover in a 6 by 6 window
from the 1-km2 land cover type.

5. Parameterization of the improved ET algorithm

For parameterization of the improved ET algorithm, we largely
follow the method for calibrating parameters of MODIS GPP/NPP
algorithm (Zhao et al., 2005). Both MODIS GPP/NPP and MODIS ET
algorithms use the same controlling factors from VPD and minimum
temperature (Tmin) on stomatal conductance. We first adopt the
parameters of VPD and Tmin setting from those for MODIS GPP/NPP
Fig. 3. Global annual evapotranspiration with (a) the old version algorithm (b) the impro
between the improved and old versions over 2000–2006. Vegetated regions (using MOD12
vegetated areas and non-vegetated areas, including water bodies, snow and ice, and urban
algorithm (Table 1), then calibrate other parameters for each biome.
Below we detail the procedure to parameterize MODIS ET.

The tower derived annual GPP and tower measured annual ET
were summed over all the available days divided by the number of
years (≤365 days/year). Then thewater use efficiency (WUE) for each
tower site was calculated as

WUE =
GPP
ET

ð32Þ

For a given vegetation type, the tower GPP, ET and WUE are
averaged over all the towers with the same biome (Table 3). Finally,
the expected annual total ET for a given biome is calculated by using
the multiyear mean annual total MODIS GPP (Zhao et al., 2005) and
tower-based WUE (listed in Table 3) as

ET exp =
MODIS GPP

WUE
ð33Þ

We use ETexp as one target (Table 3) to calibrate other parameters
in Biome-Property-Look-Up-Table (BPLUT) except Tmin and VPD,
which are directly adopted from MODIS GPP parameters as men-
tioned above. Each time, the improved ET algorithm is run globally
using a set of parameter values at the 0.5° resolution over 2000–2006.
The annual MODIS GPP and estimated annual MODIS ET averaged
globally for each biome type (ETmod) may greatly differ from the tower
GPP and ETexp because, 1) only 46 AmeriFlux tower sites are used to
get tower GPP, ET andWUE, and thus they may not represent average
conditions for a biome type at the global scale; 2) WUE is the water
use efficiency, which should be the ratio of GPP to ET via transpiration.
Considering the evaporation included in ET, there is some bias in the
calculated WUE and hence ETexp (Law et al., 2002). Therefore, when
we calibrate parameters in BPLUT at global scale, not only ETmod is
compared to ETexp, but also the spatial pattern of average annual ET
over 2000–2006 is compared with Chen et al.'s 0.5° global precipi-
tation data (Chen et al., 2002). At the arid and semi-arid areas, up to
50% or even higher than 100% of the annual precipitation is returned
to the atmosphere as ET (Mellouli et al., 2000). At the local scale, the
improved ET algorithm is run at the 46 tower sites and the RMSE
between the daily ET estimates and ET measurements is calculated.
We modify BPLUT and repeat the cycle of comparison till we choose
one set of parameter values that perform the best both globally and
locally for BPLUT (Table 1). There are no towers with deciduous
ved algorithm and (c) the difference of global annual evapotranspiration (NEW–OLD)
Q1 land cover type 2) are shown in color, while regions in white are barren or sparsely
areas.
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Fig. 4. Comparison of the histograms of climatological average of global annual
evapotranspiration with the old version algorithm (dashed line) andwith the improved
algorithm (solid line) over 2000–2006. The global average ET with the old version is
415.5 mm/year and 568.4 mm/year with the improved algorithm (see text). These
comparisons are only for vegetated land surfaces. The vegetated land area is shown as
the colored area in Fig. 3.
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needle-leaf forest (DNF) or savannas (SV) in the 46 AmeriFlux towers.
Wemade an assumption that the ET for the DNF should be close to the
one for ENF, and the ET for SV should be a little lower than the one for
woody savannas.

6. Results and discussion

6.1. Implementing ET algorithm at the global scale

The old and improved ET algorithms were implemented globally
over 2000–2006 at a resolution of 0.05° using the preprocessed
MODIS remote sensing data and the GMAO meteorological data as
detailed in Section 4.2. Fig. 3a and b show that both algorithms have
the highest ET over the tropical forests, whereas dry areas and areas
with short growing seasons have the lowest estimates of ET. The ET for
temperate and boreal forests lies between the two extremes (Fig. 3a
and b). The difference in the global annual ET between the improved
and old algorithms in Fig. 3c shows that the improved algorithm
generally enhances the global annual ET, especially at the semi- and
arid regions, with an average of 568±378 mm year−1 over vegetated
land areas (Fig. 4). The global ET with the old algorithm has a global
average of 416 mm year−1±337 mm year−1. The histograms of the
global annual ET by both algorithms in Fig. 4 also demonstrate that the
old algorithm underestimated ET in the semi- and arid areas while
overestimates ET in areas with the highest ET, such as part of the
Amazon, Africa and tropic rainforests (Figs. 3c and 4). The improved
ET algorithm lowers the ET estimates over some areas of high
latitudes in the northern hemisphere (Fig. 3c).

Based onMOD12Q1 land cover types 2, barren/deserts take up 24%
of the Earth's land surface. If we assume that the ET from the barren/
deserts is zero, the average MODIS ET estimate with the improved
algorithm over the entire land surface is 568 ⁎ (100−24) /
100=431.68 mm year−1. In reality, ET at the barren/deserts is not
zero, so the ET estimates should be in the range of a little higher than
431.68 mm year−1. Over the entire land surface of the globe,
precipitation averages around 750 mm year−1 (Fisher et al., 2005).
Some studies concluded that ET returns more than 60% of precipita-
tion on land back to the atmosphere (Korzoun et al., 1978; L'vovich &
White, 1990). Based on these published data, the actual ET over the
global land surface should be around 750⁎60%=450 mm year−1. Our
average MODIS ET estimate by the improved algorithm over the
complete land surface is very close to the actual ET calculated from
precipitation. The MODIS ET estimate with the old algorithm over the
vegetated area (416 mm year−1) was less than the actual ET
(450 mm year−1) over the entire land surface.

Averaged over 2000–2006, the total global annual ET over the
vegetated land surface with the improved algorithm is 62.8×103 km3,
much higher than 45.8×103 km3 with the old algorithm, and a little
less than 65.5×103 km3 reported by Oki and Kanae (2006), because
our MODIS ET doesn't include urban and barren areas since there is no
MODIS derived FPAR/LAI for these land cover types.

Fig. 5 shows zonal mean of global annual ET by both algorithms.
The old algorithm overestimated ET at very high latitudes where the
growing season is so short that the actual ET should bemuch less than
1000 mm year−1 (Fig. 5). Liski et al. (2003) reported that the ET in
boreal and temperate forests across Europe (34 sites) ranged from
328 to 654 mm year−1, while the average ET was 466 mm yr−1 for
Canada (18 sites) and 642 mm year−1 for the US and Central America
(26 sites) for biomes ranging from arctic tundra to tropical rainforest.
The improved ET estimates are within the range of these reported ET
from field data.

6.2. Algorithm performance at the eddy flux tower sites

As shown in Table 4, within the nine land cover types among the
towers, the improved ET algorithm enhances the ET estimates the
most at woody savannas, grasslands and croplands, while the
improved ET estimates have no big differences from the ET estimates
by the old algorithm over the forests. For each of the seven biome
types among the 46 flux towers except for CSH and OSH since there is
only one tower with fewer than 365 measurements for each of them,
we chose one tower to show the performance of the improved
algorithm against the old algorithm (Fig. 6). The left panel (Fig. 6a, c, e,
g, i, k andm) shows the comparison of the ET measurements to the ET
estimates with the old algorithm, while the right panel (Fig. 6b, d, f, h,
j, l and n) shows the comparison to the ET estimates with the
improved algorithm. Over the grasslands, croplands and woody
savanna, the old algorithm underestimated the ET. The improved
algorithm enhances the ET estimates significantly. For the towers
Tonzi Ranch (WL), Walnut River (Grass), Bondville (Crop), the
improved ET estimates capture the magnitude of the daily ET
observations better than the old algorithm. For example, at Tonzi
Ranch, the improved algorithm reduced the RMSE of the daily ET
estimates from 0.75 mm day−1 to 0.67 mm day−1 driven by tower
meteorological data, and from 0.79 mm day−1 to 0.68 mm day−1

driven by the GMAO meteorological data (Table 4). For the forest
towers such as Donaldson (ENF), Amazonian Tapajos KM67 Mature
Forest (EBF), Willow Creek (DBF) and Little Prospect Hill (MF),
although the daily RMSE of the improved ET are higher than that of
the old ET, daily average improved ET estimates have smaller MAEs
than the old ET (Table 4). For instance, at Donaldson, the improved
algorithm has higher RMSE (1.30 and 1.49 mm day−1) than the old
algorithm (1.06 and 1.10 mm day−1) driven by tower and GMAO
meteorological data, respectively; however, the magnitude of the
improved daily ET is much closer to the tower-measured ET (Fig. 6a
and b) and the improved algorithm has lower MAE (0.29 and
0.45 mm day−1) than the old algorithm (0.70 and 0.62 mm day−1)
driven by tower and GMAOmeteorological data, respectively. We use
the Taylor skill score (Taylor, 2001) to evaluate the skill of the
performances (Table 4).

S =
4 × 1 + Rð Þ

σ̂ + 1=σ̂ð Þ2 × 1 + R0ð Þ ð34Þ

where R is the correlation coefficient, R0 is theoretical maximum
correlation, and σ̂ is the standard deviation of ET estimates
normalized by the standard deviation of ET measurements. The
improved algorithm has higher scores at Donaldson (Table 4) which
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Fig. 5. Comparison of the climatological zonal mean of global annual evapotranspiration with the old version algorithm (grey dashed line) and with the improved algorithm (solid
black line) over 2000–2006. Overestimated ET at the high latitude in the north hemisphere with old version are lowered down with the improved algorithm. These comparisons are
only for vegetated land surfaces. The vegetated land area is shown as the colored area in Fig. 3.
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implies that the improved algorithm performances better at Donald-
son than the old one.

Relative to the old algorithm, the improved algorithm reduces
average daily ET MAE across the 46 towers from 0.39 mm day−1 to
0.33 mm day−1 (tower-specificmeteorology) and from0.40 mm day−1

to 0.31 mm day−1 (GMAO meteorology), indicating that the improved
ET estimates capture the magnitudes of the ET measurements better
than the old algorithm. The improved MAE values are 24.6% (tower-
specificmeteorology) and 24.1% (GMAO meteorology) of the ET
measurements by the improved algorithm, within the 10–30% range
of the accuracy of ET observations (Courault et al., 2005; Jiang et al.,
2004; Kalma et al., 2008). At the 46 tower sites, the MAE from the
improved ET algorithm is significantly better than theMAE from the old
ET algorithm, with one-tailed pb0.06 driven by tower meteorological
data and pb0.01 driven byGMAOdata. The improved algorithm slightly
increases the average RMSE of daily ET (Fig. 7; Table 4) from
0.81 mm day−1 to 0.84 mm day−1 and from 0.88 mm day−1 to
0.90 mm day−1 (GMAO meteorology), and decreases the average
correlation coefficients between the daily ET estimates and measure-
ments from 0.64 to 0.58 (GMAO meteorology) and from 0.71 to 0.65
(tower-specific meteorology) (Table 4). However, the new scores of
0.55 (tower-specific) and 0.53 (GMAO) across the 46 towers are higher
than 0.50 and 0.46 with the old algorithm (Table 4), indicating that
overall, the improved algorithm performances better at the 46 towers.

Fig. 7 shows the comparisons of the average ET observations to the
average daily ET estimates with the old and the improved algorithms
across all the available days at the 46 flux tower sites. Both algorithms
were driven by tower-specific meteorology (Fig. 7a and c) and the
global GMAOmeteorology (Fig. 7b and d). The improved ET algorithm
increases the correlation coefficients of the ET observations with
tower-driven ET estimates from 0.83 (Fig. 7a) to 0.86 (Fig. 7c), and
from 0.81 (Fig. 7b) to 0.86 (Fig. 7d) driven by GMAO meteorology.
6.3. Discussion

The existing biases between the ET estimates and the ET
measurements arises from below major causes,
1) Algorithm input data. Uncertainties from MODIS LAI/FPAR
(Demarty et al., 2007; Yang et al., 2006) and daily GMAO
meteorological data (Zhao et al., 2006) can introduce biases to
ET estimates. Heinsch et al. (2006) compared tower meteorolog-
ical data with GMAO data, and the 1-km2 Collection 4 MODIS LAI
(MOD15) and MODIS land cover (MOD12) with ground-based
measurements, finding existing biases in both the GMAO data and
the MODIS data when compared to observations. The biases in
GMAOmeteorological data while approximately 62% of MODIS LAI
estimates were within the estimates based on field optical
measurements, remaining values overestimated site values
(Heinsch et al., 2006). Comparison of LAI at the patch level can
significantly improve the agreements, but the Collection 3 MODIS
LAI still tends to be higher (Wang et al., 2004). Overestimates of
LAI may result in overestimates of ET even if other input data such
as the meteorological data and MODIS albedo data are relatively
accurate. Although the temporal filling of unreliable MODIS data,
including LAI, FPAR and albedo, greatly improves the accuracy of
inputs, the filled values are artificial and contain uncertainties.
There is a hypothesis that all the uncertainties associated with the
MODIS data are contained in the quality flags MODIS QA, an
assumption which proved efficient for reducing the weight of
unreliable satellite products, especially over tropical forests
(Demarty et al., 2007). However, the MODIS QA remains a
qualitative measure of uncertainty, and does not quantitatively
accounts for each source of error in the MODIS data retrieval
procedure (sensor calibration, atmospheric corrections, land cover
mapping radiative transfer forward and inverse modelling)
(Demarty et al., 2007). Also, the inaccuracy in MODIS FPAR will
lead to miscalculation of Fc, and hence ET. All of these
uncertainties from inputs can introduce biases in ET estimates
that are difficult to detect.

2) Inaccuracy in the measured data. Currently, the ground data from
the eddy covariance flux towers provide the best ET estimates.
However, they have an error or uncertainties of about 10–30%
based on comparison of multiple towers at the same site, or by
comparison with independent measurements of ET by other
methods such as lysimeters or sap flux sensors (Glenn, Morino,
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Table 4
The tower names, abbreviations, latitude (lat), longitude (lon), biome types in the parentheses, number of days with valid towermeasurements (Days), average daily tower evapotranspirationmeasurements over all the days with valid values
(ET_OBS: mm/day), daily root mean square error (RMSE:mm/day), mean absolute bias (MAE:mm/day), the contribution of night time ET to daily total ET driven by GMAOmeteorological data (%, Night), the ratio of soil heat flux to daily LE (%,
G) driven by GMAOmeteorology, correlation coefficient (R) and Taylor skill score (S) of Evapotranspiration for the 46 AmeriFlux eddy flux towers. 1: tower-driven results from the old version; 2: GMAO-driven results from the old version; 3:
tower-driven results from the improved version; 4: GMAO-driven results from the improved version.

Site Abbrev. lat lon Days ET_OBS RMSE1 RMSE2 RMSE3 RMSE4 Night G MAE1 MAE2 MAE3 MAE4 R1 R2 R3 R4 S1 S2 S3 S4 Citations

ARM_SGP_Main USARM
(Crop)

36.6 −97.5 1129 1.43 1.03 1.00 1.06 1.00 21.39 2.18 0.74 0.67 0.62 0.3 0.6 0.57 0.42 0.41 0.27 0.21 0.76 0.71

Bondville USBo1
(Crop)

40.0 −88.3 1616 1.82 1.13 1.13 0.96 1.03 8.46 1.08 0.76 0.67 0.3 0.16 0.76 0.74 0.78 0.73 0.19 0.16 0.54 0.61

Mead_Irrigated USNe1
(Crop)

41.2 −96.5 1080 1.62 1.42 1.43 1.16 1.18 10.02 1.85 0.91 0.84 0.6 0.48 0.89 0.84 0.87 0.81 0.14 0.14 0.45 0.70

Mead_Irrigated_Rotation USNe2
(Crop)

41.2 −96.5 1022 1.56 1.41 1.41 1.17 1.18 10.66 1.61 0.9 0.84 0.62 0.48 0.87 0.84 0.85 0.8 0.02 0.01 0.12 0.05

Mead_Rainfed USNe3
(Crop)

41.2 −96.4 1027 1.46 1.19 1.18 0.95 0.97 10.40 1.78 0.8 0.73 0.47 0.35 0.89 0.85 0.85 0.79 0.05 0.05 0.31 0.45

Rosemount_G19_Alternative_
Management_Corn_
Soybean_Rotation

USRo3
(Crop)

44.7 −93.1 573 1.35 0.97 0.96 0.82 0.79 7.35 1.51 0.6 0.61 0.22 0.21 0.77 0.76 0.72 0.75 0.39 0.41 0.38 0.50

Rosemount_G21_Conventional_
Management_Corn_
Soybean_Rotation

USRo1
(Crop)

44.7 −93.1 574 1.39 1.04 1.04 0.85 0.82 7.42 1.52 0.66 0.66 0.27 0.26 0.72 0.71 0.71 0.72 0.32 0.23 0.32 0.23

Sky_Oaks_Old USSO2
(CSH)

33.4 −116.6 333 1.04 0.89 1.00 1.10 0.93 67.01 5.26 0.54 0.67 0.71 0.51 0.21 −0.02 0.02 0.06 0.80 0.86 0.86 0.82

Bartlett_Experimental_Forest USBar
(DBF)

44.1 −71.3 614 0.84 0.97 1.18 0.95 1.03 −0.85 1.18 0.55 0.77 0.48 0.66 0.9 0.81 0.9 0.83 0.54 0.46 0.68 0.58 Jenkins et al.,
2007

Missouri_Ozark USMOz
(DBF)

38.7 −92.2 606 2.20 0.92 1.07 0.95 1.04 0.95 1.71 0.1 0.07 0.03 0.08 0.83 0.74 0.84 0.76 0.25 0.25 0.10 0.16

Morgan_Monroe_State_Forest USMMS
(DBF)

39.3 −86.4 1483 1.16 0.67 0.87 0.71 0.81 −2.57 1.60 0.27 0.39 0.27 0.27 0.88 0.81 0.88 0.82 0.20 0.24 0.43 0.53

Ohio_Oak_Openings USOho
(DBF)

41.6 −83.8 371 1.94 0.78 0.84 0.79 0.83 −0.60 0.85 0.07 0.02 0.14 0.17 0.85 0.83 0.86 0.83 0.88 0.88 0.44 0.29

UMBS USUMB
(DBF)

45.6 −84.7 1205 1.22 0.45 0.64 0.48 0.60 −1.58 0.69 0.01 0.11 0.02 0.05 0.94 0.88 0.93 0.89 0.06 0.08 0.25 0.36

Willow_Creek USWCr
(DBF)

45.8 −90.1 1246 0.97 0.56 0.84 0.59 0.76 −1.75 1.28 0.25 0.39 0.18 0.35 0.91 0.83 0.91 0.85 0.37 0.27 0.77 0.89 Cook et al.,
2004

LBA_Tapajos_KM67_
Mature_Forest

BRSa1
(EBF)

–2.9 –55.0 1008 3.08 0.67 1.18 0.72 1.28 3.83 0.00 0.35 0.28 0.44 0.11 0.74 0.34 0.76 0.33 0.27 0.14 0.64 0.17 Hutyra et al.,
2007; Rocha
et al., 2009;
Fisher et al.,
2009

LBA_Tapajos_KM83_
Logged_Forest

BRSa3
(EBF)

–3.0 –55.0 1281 3.63 1.05 1.39 0.91 1.39 4.65 0.00 0.7 0.62 0.29 0.45 0.61 0.37 0.62 0.35 0.04 0.07 0.65 0.73

Blodgett_Forest USBlo
(ENF)

38.9 –120.6 1586 1.99 1.11 1.48 1.11 1.41 3.81 2.21 0.57 0.66 0.57 0.58 0.65 0.19 0.65 0.24 0.84 0.49 0.87 0.35

Donaldson USSP3
(ENF)

29.8 –82.2 1585 2.68 1.06 1.10 1.30 1.49 16.86 1.29 0.57 0.5 0.28 0.51 0.65 0.56 0.52 0.48 0.57 0.56 0.80 0.50 Gholz &
Clark, 2002;
Clark et al.,
2004

Flagstaff_Unmanaged_Forest USFuf
(ENF)

35.1 –111.8 308 1.24 0.81 0.99 0.92 1.00 3.40 –0.32 0.44 0.51 0.59 0.61 0.62 0.33 0.62 0.42 0.93 0.92 0.66 0.72

Metolius_First_Young_Pine USMe5
(ENF)

44.4 –121.6 545 0.99 0.60 0.57 0.60 0.58 –0.70 1.60 0.06 0.06 0.11 0.01 0.28 0.29 0.25 0.26 0.11 0.10 0.28 0.26 Anthoni et
al., 2002

Metolius_Intermediate_Pine USMe2
(ENF)

44.5 –121.6 707 1.18 0.76 0.76 0.77 0.79 –0.19 2.28 0.08 0.07 0.08 0.1 0.34 0.31 0.32 0.29 0.10 0.09 0.25 0.24 Thomas et
al., 2009
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Metolius_New_Young_Pine USMe3
(ENF)

44.3 –121.6 361 0.93 0.61 0.54 0.66 0.57 –3.58 2.63 0.28 0 0.37 0.12 0.4 0.42 0.39 0.38 0.19 0.18 0.41 0.40 Vickers et al.,
2010

Niwot_Ridge USNR1
(ENF)

40.0 −105.5 1535 1.54 0.97 1.01 0.96 1.00 −1.26 7.83 0.67 0.65 0.66 0.69 0.68 0.6 0.68 0.64 0.64 0.61 0.60 0.59

UCI_1850 CANS1
(ENF)

55.9 −98.5 429 0.56 0.38 0.41 0.51 0.51 −0.63 −1.03 0.1 0.08 0.1 0.04 0.82 0.78 0.74 0.7 0.55 0.44 0.56 0.52

UCI_1930 CANS2
(ENF)

55.9 −98.5 431 0.57 0.32 0.38 0.41 0.43 −0.69 −0.78 0.09 0.09 0.08 0.03 0.86 0.8 0.78 0.75 0.24 0.27 0.14 0.26

UCI_1964 CANS3
(ENF)

55.9 −98.4 488 0.54 0.35 0.40 0.50 0.51 2.09 −0.77 0.04 0.08 0.12 0.11 0.83 0.79 0.75 0.73 0.85 0.85 0.77 0.85

UCI_1964wet CANS4
(ENF)

55.9 −98.4 236 0.38 0.40 0.50 0.50 0.58 0.39 −1.37 0.18 0.28 0.24 0.27 0.76 0.82 0.71 0.76 0.91 0.87 0.85 0.87

UCI_1981 CANS5
(ENF)

55.9 −98.5 503 0.58 0.38 0.50 0.58 0.65 3.17 −0.50 0.07 0.14 0.18 0.19 0.84 0.77 0.77 0.71 0.65 0.57 0.46 0.48

UCI_1989 CANS6
(ENF)

55.9 −99.0 494 0.53 0.35 0.39 0.48 0.48 1.25 −1.01 0.06 0.06 0.14 0.09 0.84 0.79 0.76 0.72 0.92 0.91 0.92 0.92

UCI_1998 CANS7
(ENF)

56.6 −99.9 411 0.59 0.33 0.37 0.39 0.44 −8.98 −0.52 0.11 0.11 0.11 0.17 0.84 0.77 0.74 0.69 0.34 0.39 0.67 0.72

Wind_River_Crane_Site USWrc
(ENF)

45.8 −122.0 974 1.54 1.08 0.96 1.71 1.28 7.84 0.62 0.31 0.21 0.94 0.67 0.48 0.41 0.48 0.41 0.32 0.36 0.67 0.70

Wisconsin_Mature_Red_Pine USWi4
(ENF)

46.7 −91.2 308 2.09 1.16 1.24 1.60 1.70 13.33 1.27 0.25 0.14 0.34 0.41 0.39 0.28 0.29 0.25 0.07 0.03 0.30 0.15

ARM_SGP_Burn USARb
(Grass)

35.5 −98.0 553 2.15 1.30 1.35 0.85 0.88 12.85 0.83 0.98 0.96 0.51 0.43 0.89 0.84 0.9 0.86 0.76 0.75 0.46 0.43

ARM_SGP_Control USARc
(Grass)

35.5 −98.0 554 2.36 1.54 1.56 1.10 1.04 12.61 0.82 1.21 1.16 0.77 0.63 0.9 0.84 0.9 0.86 0.32 0.22 0.89 0.78

Atqasuk USAtq
(Grass)

70.5 −157.4 244 0.11 0.45 0.45 0.50 0.53 7.36 0.00 0 0.02 0.02 0.16 0.25 0.23 0.11 −0.03 0.85 0.84 0.63 0.70

Audubon_Grasslands USAud
(Grass)

31.6 −110.5 1431 0.78 0.81 0.81 0.81 0.79 52.58 2.35 0.48 0.45 0.37 0.07 0.69 0.63 0.47 0.4 0.86 0.82 0.73 0.74

Kendall_Grassland USWkg
(Grass)

31.7 −109.9 929 0.63 0.65 0.64 0.68 0.70 23.92 2.10 0.45 0.39 0.19 0 0.5 0.52 0.27 0.26 0.85 0.80 0.62 0.62

Walnut_River USWlr
(Grass)

37.5 −96.9 885 1.86 1.00 1.05 0.68 0.75 45.37 1.77 0.36 0.33 0.3 0.11 0.68 0.63 0.51 0.46 0.34 0.19 0.22 0.13

Fort_Peck USFPe
(Grass)

48.3 −105.1 1095 0.77 0.81 0.77 0.80 0.81 10.37 0.67 0.78 0.77 0.15 0.2 0.87 0.84 0.85 0.8 0.91 0.80 0.62 0.56

Fort_Dix USDix
(MF)

40.0 −74.4 412 1.56 0.74 0.79 1.25 1.63 15.63 0.25 0.01 0.28 0.43 0.87 0.75 0.77 0.69 0.68 0.69 0.65 0.51 0.54

Little_Prospect_Hill USLPH
(MF)

42.5 −72.2 667 1.35 0.61 0.87 1.25 1.37 15.67 0.50 0.18 0.43 0.81 0.83 0.9 0.84 0.86 0.76 0.73 0.71 0.66 0.54 Hadley et al.,
2008

Sylvania_Wilderness USSyv
(MF)

46.2 −89.3 825 0.89 0.59 0.76 1.00 1.13 9.42 0.25 0.26 0.38 0.47 0.62 0.9 0.83 0.81 0.78 0.95 0.90 0.93 0.92 Desai et al.,
2005

Ivotuk USIvo
(OSH)

68.5 −155.8 210 0.19 0.23 0.26 0.31 0.34 6.00 0.00 0.03 0.1 0.02 0.02 0.64 0.53 0.35 −0.01 0.59 0.42 0.92 0.86

Flagstaff_Wildfire USFwf
(WL)

35.4 −111.8 338 0.94 0.68 0.69 0.84 0.75 47.89 −0.49 0.45 0.42 0.43 0.31 0.65 0.57 0.24 0.35 0.94 0.82 0.86 0.87

Freeman_Ranch_Mesquite_Juniper USFR2
(WL)

29.9 −98.0 649 2.08 1.08 0.95 0.91 0.85 14.13 0.68 0.65 0.54 0.1 0.29 0.72 0.81 0.69 0.79 0.33 0.51 0.10 0.31

Tonzi_Ranch USTon
(WL)

38.4 −121.0 1342 1.13 0.75 0.79 0.67 0.68 20.42 4.59 0.2 0.19 0.01 0.02 0.73 0.68 0.78 0.75 0.70 0.64 0.37 0.32 Baldocchi et
al., 2004; Xu
& Baldocchi,
2003

Average 1.34 0.81 0.88 0.84 0.90 9.53 1.09 0.39 0.40 0.33 0.31 0.71 0.64 0.65 0.58 0.50 0.46 0.55 0.53
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et al., 2008b). Also, the eddy covariance flux towers have an energy
balance closure problem that, the sum of the net radiation and the
ground heat flux, was found in most cases to be larger than the
sum of turbulent fluxes of latent heat and sensible heat (Aubinet,
Fig. 6. The ETmeasurements (black dots, OBS), the ET estimates with the old version (the left
h, j, l, and n) driven by flux tower measured meteorological data (tower_met, black lines) an
sites, Donaldson (a and d), LBA Tapajos KM67Mature Forest (c and d),Willow Creek (e and f)
(m and n).
2000; Wilson et al., 2002). Correcting error and reducing
uncertainty in the ET measurements are still uncertain due to
the closure error (Shuttleworth, 2007). Scott (2010) used the
watershed water balance to evaluate the accuracy of eddy
panel, a, c, e, g, i, k, andm) and the improvedMODIS ET algorithm (the right panel, b, d, f,
d GMAO meteorological data (GMAO_met, grey lines) over 2000–2006 at seven tower
, Little Prospect Hill (g and h), Tonzi Ranch (i and j),Walnut River (k and l) and Bondville
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Fig. 6 (continued).
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covariance ET measurements at three semiarid ecosystems, and
found that eddy covariance towers usually underestimated the ET
at high values and overestimated the ET at the low values.

3) Scaling from tower to landscape. The measuring height and the
horizontal scale of measurement of the turbulent fluxes like latent
heat fluxes and sensible heat fluxes, usually 2–5 m, have
significant influences on the footprint (Schmid, 1997) and the
size of underlying surface (Foken, 2008). Also, the complex terrain
(Aubinet et al., 2005; Feigenwinter et al., 2008) and complicated
canopy structure, the stochastic nature of turbulence (Hollinger &
Richardson, 2005; Moncrieff et al., 1996) can affect the eddy
covariance measurements (Yi, 2008; Yi et al., 2010). The
comparison of measured ET with the estimated from the 3×3
1-km2 MODIS across all 46 sites may introduce uncertainties due
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to the differences in tower footprints for different towers and
under varying environmental conditions for a given tower. For
example, among the 46 towers used to examine the performance
of the ET algorithms, there are seven eddy covariance towers at
MB, Canada (CANS1…7), which are very close and are all ENF
(Table 4). The ET measurements at the seven CANS towers are
quite different, with the average daily ET ranging from 0.38 to
0.59 mm day−1 (Table 4). The magnitudes and interannual
variability substantially differ among the seven CANS towers.
And in heterogeneous areas, the differing scales of the tower and
MODIS ET estimates should be performed via an upscaling process,
such as that used during the Bigfoot MODIS validation project
(Cohen et al., 2003; Turner, et al., 2003a; Turner, et al., 2003b). The
expense and intensity of such studies, however, limit our ability to
perform such comparisons.

4) Algorithm limitations. A large number of physical factors are
involved in soil surface evaporation and plant transpiration
processes, including microclimate, plant biophysics for site specific
species and landscapeheterogeneity,making accurate assessment of
ET a challenge (Friedl, 1996; McVicar et al., 2007; Vörösmarty, et al.,
1998). Some issues remaining in the ET algorithmmay contribute to
the differences between the tower ET measurements and the ET
estimates by the algorithm. The algorithm doesn't account for the
stand age, disturbance history or species composition. Biophysical
parameters such as gl_sh, rblmax and rblmin, VPDopen and VPDclose used
in the algorithm have uncertainties since the same values are used
for a given biome type globally. We have little knowledge regarding
some parameters (e.g., the soil heat fluxes, the boundary layer
resistance for soil evaporation) and the mechanisms involved.
Although it is generally assumed that stomata close at night, several
studies have documented nighttime stomatal opening in many
species over a range of habitats (Musselman & Minnick, 2000).
Incomplete stomatal closure during thenight is observed in a diverse
range of vegetation types (Caird et al., 2007; Daley & Phillips, 2006;
Zeppel et al., 2010). Assumption of the stomata closure at night can
induce biases to the nighttime plant transpiration, and hence induce
underestimated daily total ET. Increasing CO2 content tends to
reduce plant transpiration due to a high-CO2 induced partial
stomatal closure (Idso & Brazel, 1984). Within one or two decades,
this effect on ET may be negligible; however, as data record
lengthens, this effect is needed to account for. As a result,
theoretically, we may overestimate ET with time. We will add
antitranspiration effect from enriched CO2 to the transpiration
module in our algorithm when we study the long-term remotely
sensed ET changes.
7. Conclusions

We have improved the old ET algorithm by 1) simplifying the
calculation of vegetation cover fraction (FC); 2) calculating ET as the
sum of daytime and nighttime components; 3) calculating soil heat
flux; 4) improving the methods to estimate stomatal conductance,
aerodynamic resistance and boundary layer resistance; 5) separating
dry canopy surface from the wet, and hence canopy water loss
includes evaporation from the wet canopy surface and transpiration
from the dry surface; and 6) dividing soil surface into saturated wet
surface andmoist surface, and thus soil evaporation includes potential
evaporation from the saturated wet surface and actual evaporation
from the moist surface. Globally, calibrating BPLUT was based on the
calculation of the WUE using the tower observed ET, GPP, and the
MODIS GPP for each vegetation type; also the spatial pattern of the ET
was checked with the global precipitation (Chen et al., 2002). Locally,
the ET estimates were compared to tower ET measurements for
calibration of parameters.

Both the old and the improved ET algorithmswere applied globally
with the GMAO and MODIS land cover, LAI/FPAR, albedo data. The
total global annual ET over the vegetated land surface areas during
2000–2006, 62.8×103 km3, estimated by the improved algorithm,
agrees well with the reported ET of 65.5×103 km3 over the terrestrial
land surface by Oki and Kanae (2006). The improved global total ET is
a little less than 65.5×103 km3 reported by Oki and Kanae (2006)
because the MODIS ET doesn't include urban and barren areas since
there is no MODIS LAI/FPAR for these land cover types.

The performance of the improved ET algorithmwas also examined
at 46 AmeriFlux eddy covariance flux towers driven by two sets of
meteorological data, tower measured meteorological data and global
GMAOmeteorological data. Results show that the improved algorithm
enhances ET estimates, reducing the tower-specific MAE of the daily
ET from 0.39 mm day−1 with the old algorithm to 0.33 mm day−1,
and reducing the GMAO-driven MAE from 0.40 mm day−1 to
0.31 mm day−1, whichmeans that the improved ET estimates capture
themagnitudes of the ETmeasurements better than the old ones. MAE
values are 24.6% and 24.1% of the ET measurements by the improved
algorithm, within the 10–30% range of the accuracy of ET measure-
ments (Courault et al., 2005; Jiang et al., 2004; Kalma et al., 2008). The
correlation coefficients of the tower-specific improved ET estimates
with the ET measurements averaged over all the available days
increases from 0.83 with the old algorithm (Fig. 7a) to 0.86 (Fig. 7c),
and from 0.81 (Fig. 7b) to 0.86 (Fig. 7d) driven by GMAO
meteorological data. The contribution of average annual nighttime
ET to annual total ET is 9.53% driven by the global GMAO



Fig. 7. Comparisons of the average ET observations to the average daily ET estimates with the old and the improved algorithms across all the available days at the 46 flux tower sites.
These data were created using (1) tower-specificmeteorology (a and c) and (2) the global GMAOmeteorology (b and d) with the old (a and b) and the improved (c and d)MOD16 ET
algorithms. The solid grey lines represent that the ratio of ET estimates to ET measurements is 1.0 and the solid black lines are the regression of the ET estimates to measurements.
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meteorological data (Table 4), and the ratio of annual soil heat flux to
annual LE driven by GMAO is substantial at some sites (Table 4),
which means that the nighttime ET and soil heat flux should not be
neglected. Based on those results, we conclude that the improved ET
algorithm improves the generation of near-real-time, 8-day and
annual ET products, providing critical information on global terrestrial
water and energy cycles and environmental changes. More impor-
tantly, the improved MODIS ET products will provide information to
land and water managers and policy makers to comprise the growing
competition for the limited water supplies and to reduce the cost of
irrigation projects (Teuling et al., 2009).

This MODIS ET algorithm will now be submitted to NASA for full
Algorithm Theoretical Basis Document review. In the interim we will
make this dataset available in a beta test mode to interested users by
contacting the senior author. Once NASA authorizes this dataset, it
will be placed in the MODIS Land product DAAC for permanent
distribution, and the dataset will be updated through 2010.
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