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Text S1) MODIS GPP/NPP algorithm 

       We used the MODIS GPP/NPP (MOD17) algorithm (S1, S2) to calculate global 1-km 
MODIS NPP from 2000 through 2009.  The algorithm calculates daily GPP as 

 minmax ****45.0* fTfVPDFPARSWradGPP ε=      (1) 

where maxε is the maximum light use efficiency; SWrad is short-wave downward solar radiation, 
of which 45% is Photosynthetically Active Radiation (PAR); FPAR is Fraction of PAR being 
absorbed by the plants; fVPD and minfT are the reduction scalar from water stresses (high daily 
time Vapor Pressure Deficit, VPD) and low temperature (low daily minimum temperature minT ), 
respectively. 

       The MODIS GPP/NPP algorithm has been modified since we generated the improved 
Collection 5 (C5) dataset (S2).  We modified the autotrophic respiration calculation in the 
algorithm.  There are two major modifications: 

1) The original MODIS algorithm calculated annual growth respiration ( gR ) as a function of 
annual maximum LAI.  As a result, for a given forest biome type, gR is almost invariable across 
space and time due to the saturation of MODIS annual maximum LAI for forests, which is 
unreasonable according to plant physiological principles (S3, S4).  We have, therefore, modified 
it by assuming growth respiration is approximately 25% of NPP (S3, S4) for C5 MOD17.  
Finally, annual NPP can be computed as 
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where mR  is the maintenance respiration. 

2)  For maintenance respiration ( mR ), 10Q  theory is used (S3), and maintenance respiration index 
(MRI) is a function of daily average air temperature ( avgT ) 
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      Previously 10Q was assumed to be a constant value of 2.0 for leaves, fine roots and live wood.  
For leaves, the new algorithm adopted a temperature-acclimated 10Q equation proposed by 
Tjoelker et al. (S5), 
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 avgTQ *046.022.310 −=         (5) 

      Using the C5 FPAR/LAI (MOD15A2) (S6), and NCEP/DOE II daily reanalysis datasets (S7) 
as inputs, and an existing validated improved Collection 4.5 (S8, S9) and further improved 
Collection4.8 MODIS GPP/NPP (S2) as references, we recalibrated BPLUT for this study 
following the method described in S10 (Tables S1).  

      We ran 1-km MODIS GPP/NPP at 1-km resolution from 2000 to 2009 with 1-km MODIS 
land cover, 1-km MODIS FPAR/LAI and daily NCEP/DOE II as inputs following the improved 
MODIS GPP/NPP procedure (S10). Figure S1 shows that spatial pattern of mean NPP for the 
past 10 years.  The next section, Text S2, details how the input datasets were processed to 
generate NPP at 1-km. 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. The spatial pattern of mean 1-km NPP for the last 10-years estimated from MODIS 
driven by NCEP/DOE II.  The white colored areas on land are non-vegetated pixels, such as 
inland water body, barren and urban as defined by MODIS land cover in Figure S2. 
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Table S1.  Biome-Property-Look-Up-Table (BPLUT) for MODIS GPP/NPP algorithm with NCEP-DOE reanalysis II and the 
Collection5 FPAR/LAI as inputs.  The full names for the University of Maryland land cover classification system (UMD_VEG_LC) 
in MOD12Q1 dataset (fieldname: Land_Cover_Type_2) are, Evergreen Needleleaf Forest (ENF), Evergreen Broadleaf Forest (EBF), 
Deciduous Needleleaf Forest (DNF), Deciduous Broadleaf Forest (DBF), Mixed forests (MF), Closed Shrublands (CShrub), Open 
Shrublands (OShrub), Woody Savannas (WSavanna), Savannas (Savanna), Grassland (Grass), and Croplands (Crop). 
 

UMD_VEG_LC  ENF  EBF DNF DBF MF CShrub  OShrub WSavanna Savanna Grass Crop

LUEmax (KgC/m2/d/MJ)  0.000962  0.001268 0.001086 0.001165 0.001051 0.001281  0.000841 0.001239 0.001206 0.000860 0.001044
Tmin_min (C)  ‐8.00  ‐8.00 ‐8.00 ‐6.00 ‐7.00 ‐8.00  ‐8.00 ‐8.00 ‐8.00 ‐8.00 ‐8.00
Tmin_max (C)  8.31  9.09 10.44 9.94 9.50 8.61  8.80 11.39 11.39 12.02 12.02
VPD_min (Pa)  650.0  800.0 650.0 650.0 650.0 650.0  650.0 650.0 650.0 650.0 650.0
VPD_max (Pa)  4600.0  3100.0 2300.0 1650.0 2400.0 4700.0  4800.0 3200.0 3100.0 5300.0 4300.0
SLA (LAI/KgC)  14.1  25.9 15.5 21.8 21.5 9.0  11.5 27.4 27.1 37.5 30.4

Q10*  2.0  2.0 2.0 2.0 2.0 2.0  2.0 2.0 2.0 2.0 2.0
froot_leaf_ratio  1.2  1.1 1.7 1.1 1.1 1.0  1.3 1.8 1.8 2.6 2.0

livewood_leaf_ratio  0.182  0.162 0.165 0.203 0.203 0.079  0.040 0.091 0.051 0.000 0.000
leaf_mr_base  0.00604  0.00604 0.00815 0.00778 0.00778 0.00869  0.00519 0.00869 0.00869 0.0098 0.0098
froot_mr_base  0.00519  0.00519 0.00519 0.00519 0.00519 0.00519  0.00519 0.00519 0.00519 0.00819 0.00819

livewood_mr_base  0.00397  0.00397 0.00397 0.00371 0.00371 0.00436  0.00218 0.00312 0.00100 0.00000 0.00000

 
*: The constant Q10 = 2.0 is applied to fine roots and live wood, while for leaves, a temperature acclimation Q10 value is used as 
described in Equation 5. 
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Text S2) Remote sensing datasets 
 

      For this study, four MODIS data products were used, including the Collection4 MODIS 
1-km land cover (MOD12Q1) (S11), the Collection5 MODIS Climate Model Grid (CMG) 0.05 
degree 8-day snow cover (MOD10C2) (S12), the Collection5 MODIS 1-km 8-day FPAR/LAI 
(MOD15A2) (S6), and the Collection5 MODIS 16-day 1-km NDVI/EVI (MOD13A2) (S13). 
We didn’t use the Collection5 MODIS land cover because the Collection5 FPAR/LAI are being 
generated at NASA based on canopy structure land cover from the Collection4 MODIS land 
cover data instead of the Collection5. 
 

1) MODIS land cover 
 

For both MODIS FPAR/LAI and GPP/NPP datasets, land cover types of water body, urban 
and barren are treated as non-vegetated area.  The 1-km UMD MODIS land cover (Figure S2) is 
used to map corresponding BPLUT for each 1-km pixel.  Based on MODIS land cover (Figure 
S2), there is totally 144.68 Million km2 land area, of which 109.03 Million km2 (or 75%) is 
vegetated land.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S2.  University of Maryland land cover classification system defined land covers from 
MOD12Q1 (land cover type 2 in MOD12Q1 dataset).  Evergreen Needleleaf Forest (ENF), 
Evergreen Broadleaf Forest (EBF), Deciduous Needleleaf Forest (DNF), Deciduous Broadleaf 
Forest (DBF), Mixed forests (MF), Closed Shrublands (CShrub), Open Shrublands (OShrub), 
Woody Savannas (WSavanna), Savannas (Savanna), grassland (Grass), and Croplands (Crop).  
Note that in this figure, we combined CShrub and OShrub into Shrub, and WSavanna and 
Savannas into Savanna. 

2) 1-km 8-day MODIS FPAR and LAI 
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The latest Collection5 1-km MODIS FPAR/LAI from 2000 through 2009 were used as 
vegetation dynamic inputs to run 1-km MODIS GPP/NPP for the past decade.  Data gaps in 8-
day FPAR/LAI caused by unfavorable atmospheric conditions, such as cloudiness and heavy 
aerosols, were filled based on the criteria for good quality assessment (S10).  Prior to late 
February 2000, FPAR/LAI are not available, and these missing gaps were filled by averaging the 
corresponding 8-day reliable FPAR/LAI from 2001 to 2003, in order to calculate a complete 
annual MODIS GPP and NPP data set for the year 2000 (S14). 

 
3) CMG MODIS snow cover data to define growing season 

 
There are two purposes for using MODIS snow cover. First, we used it to define growing 

season spatially.  NPP is the accumulated carbon fixed by vegetation during the growing season. 
Though there is plant autotrophic respiration during winter time, based on Q10 theory (Equation 
4), its contribution to reducing NPP is relatively small due to low temperature and low living 
biomass (i.e., low LAI and hence low leaf biomass in dormant seasons). Air temperature is often 
being used to identify growing season, which suffers from both coarse resolution issues and 
uncertainties from reanalysis datasets.  We used MODIS snow cover data to define the average 
growing season in order to get growing season average or total value of other meteorological 
variables.  Secondly, we used MODIS snow cover data to show which parts of the land 
vegetation is mainly controlled by low temperature.  Land areas with a long snow cover period 
generally imply a short growing season and temperature-limitation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S3.  Average snow cover free days derived from 8-day MODIS snow cover data from 
2000 through 2009.  For vegetated land areas, much fewer average annual snow cover days (7.5 
days) in South Hemisphere (SH) than that in North Hemisphere (NH) (125 days). 

 



8 

 

With multi-year global MOD10C2 8-day snow cover data from 2000 through 2009, we 
identified the first and last 8-day with no snow cover (snow cover free) for each year, and then 
we averaged the two periods for ten years to get the average snow cover free days for MODIS 
era (Figure S3).  We also aggregated 8-day results into 16-day and monthly for application to 
other 16-day and monthly datasets.  As shown in Figure S3, except for Antarctic and almost all 
of Greenland, where there is snow cover across the entire year and also no vegetation as defined 
in MOD12Q1 (Figure S2), for vegetated land areas, large parts of north hemisphere have snow 
cover presence within a year, while very few parts over the south hemisphere do.  Though in 
some cases, such as deserts in Northwestern China, there is a long winter season but no snow 
cover, it is so dry that there is almost non-vegetation, being classified as barren (non-vegetated) 
by MODIS land cover (Figure S2). 

 
4) 1-km 16-day MODIS NDVI 

 
Integrated NDVI over the growing season has been traditionally used as a surrogate of NPP 

(S15).  We used NDVI to verify some large-scale NPP negative anomalies when there is no 
publication or report on them (Figure S6).  We first filled data gaps caused by cloudiness in C5 
16-day 1-km NDVI in a similar fashion to that applied to filling data gaps in 8-day FPAR/LAI 
(S10), then we calculated the growing season integrated NDVI using the above snow cover free 
period as growing season. 
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Text S3) Meteorological datasets 
 

      We used NCEP/DOE reanalysis II (S7) as the daily driving meteorological dataset for 
MODIS GPP/NPP. NCEP/DOE II is an improved version of the NCEP/NCAR reanalysis I 
model (S16) that fixed errors and updated parameterizations of physical processes (S7). The 
meteorological variables for MODIS GPP/NPP inputs, including daily minimum temperature 
(Tmin), daytime temperature (Tday), daily average temperature (Tavg), daily vapor pressure, and 
daily total downward short wave solar radiation (SWrad), were derived from 6-hourly 
NCEP/DOE II. At the global scale, though there are some biases in the surface variables of 
meteorological reanalysis datasets (S14, S17), NCEP/DOE II was found capable of capturing 
major changes in the surface climate anomalies (S17). We further verified the quality of 
temperature and downward solar radiation for the period from 2000 to 2009. 

 
      MODIS GPP/NPP algorithm uses daytime vapor pressure deficit (VPD) as water stress, and 
precipitation is not an input to the model (Equation 1). Though using VPD alone may fail to 
capture the seasonality of full water stresses over some regions with strong summer monsoon, it 
captures inter-annual variability of full water stresses and both seasonal and inter-annual 
variations of GPP when combining with remotely sensed FPAR since FPAR can partially reflect 
soil moisture stress (S18). For a thorough analysis, we used Palmer Drought Severity Index 
(PDSI) (S19) as a surrogate of soil moisture in warm seasons (S20) to independently measure 
changes in environmental water stress (Text S4). 
 

Below details how we evaluated NCEP/DOE II datasets for the past decade. 
  

1) Evaluation of surface air temperature from NCEP/DOE II 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S4.  Comparison of the temperature anomalies from dataset CRUTEM3 with that from 
NCEP/DOE II from 2000 to 2009. 
 
       We compared air temperature of NCEP/DOE II with that from CRUTEM3 (S21), a global 
gridded temperature dataset based on instrumental measurements.  Figure S4 shows the 
comparisons of inter-annual anomalies of surface air temperature over the two hemispheres on 
vegetated land areas from 2000 through 2009, demonstrating that surface temperatures from 
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NCEP/DOE II are reliable for our study. For both hemispheres, the correlations between the 
CRUTEM3 and NCEP/DOE II are significant (r >= 0.94, p < 0.0001). 

 
2) Evaluation of solar radiation from NCEP/DOE II 

 

 

 

 

 

 

 

 

Figure S5.  Comparison of monthly variation of mean downward solar radiation from the 
observed at a Baseline Surface Radiation Network (BSRN) site, MAN (full name: Momote, 
location is shown in Figure S9E), with that from NCEP/DOE II during the available observed 
data period January 2000 to June 2009 since 2000.  Both shows decreased trends of SWrad from 
2000 to 2009, with a linear trend y= -0.0042 · x + 17.811 for the observed, and y = -0.0303 · x + 
19.035 for NCEP/DOE II. 
 
       Solar radiation generally contains larger uncertainties than surface air temperature in 
meteorological reanalyses (S16), and validation of solar radiation is challenging.  Though 
remotely sensed cloudiness or SWrad can be used to compare with these from meteorological 
reanalyses, historical satellite data are found to contain artifacts mainly from shifts in view angle 
and satellite orbits and therefore to be inappropriate to be a reference for evaluation of reanalysis 
datasets (S22).  Well-instrumented surface sites, such as Baseline Surface Radiation Network 
(BSRN), provide a reference to evaluate satellite retrievals and other data sources (S22).  Here 
we used the 1 minute time interval measured downward global solar radiation from a station 
named Momote (short name MAN for BSRN stations), which is located in an island of Papua 
New Guinea (Latitude: -2.0580, Longitude: 147.4250, and Elevation: 6.0 m) (Figure S9E). The 
reason for choosing the station of MAN is that we are concerned about radiation changes in the 
humid rainforests, where solar radiation is the dominant control on vegetation growth (S23). 
There are only four BSRN stations located in or close to Amazon rainforests and Southeast 
Asian rainforests, and the short names are RLM, PTR, BRB and MAN 
(http://www.bsrn.awi.de/fileadmin/user_upload/Home/Maps/BSRN-Station-Global.png). 
However, from 2000 through 2009, there are only 2-month data in 2007 for RLM, 1-month in 
2006 and 7-month in 2007 for PTR, 8-month in 2006 and 10-month in 2007 for BRB 
(http://www.pangaea.de/PHP/BSRN_Status.php?q=LR0100). Only the station of MAN has data 
from 2000 through June 2009. We aggregated minute measurements from MAN into monthly to 
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evaluate the smoothed SWrad from four surrounding NCEP/DOE II cells (S10).  Figure S5 
shows monthly time series of SWrad from the measured and NCEP/DOE II.  The correlation 
between the two is 0.63 (n=114, p < 0.00001), and both had decreased trends from 2000 to 
2009, which is the underlying cause of the reduction of NPP in rainforests of Southeast Asia 
regions (Text S8).  An increasing trend in precipitation over Southeast Asian rainforests may 
also imply more cloudiness and hence less solar radiation (Figure S9B, Figure S9E). 
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Text S4) Palmer Drought Severity Index (PDSI) 
 

       Among widely used drought indices (S24), PDSI (S19) is the only index which uses easily 
available monthly precipitation and temperature as input to assess drought (S24).  It is 
impossible to devise a universal drought index because of the complexity of drought, and PDSI 
has limitations (S24).  PDSI was originally designed to assess drought problems in semiarid 
climates, specifically, the Great Plains of the USA (S19), and thus some parameters may not 
work well for other regions (S24).  Some assumptions in PDSI dealing with hydrological 
processes are also criticized, such as not treating frozen soil or snow accumulation and melt, and 
evapotranspiration occurring at the potential rate (S20, S24).  Despite these limitations, Dai et al. 
(S20) found that PDSI correlates with soil moisture during warm seasons. 
 
       Palmer used a two-layer bucket model to quantify monthly water supply and demand by 
accounting for the input (precipitation), output (evaporation and runoff), and the antecedent soil 
water status.  The model also considers multi-year average monthly water exchanges so that for a 
given month, the departure level of precipitation (supply) from the normal water demand can be 
quantified. Details of the Palmer model are described in S19. 
 
       However, the existing Dai et al.’s PDSI data (S20) only cover period through 2005, and the 
spatial resolution of 2.5 by 2.5 degree is not fine enough for our study.  We calculated half 
degree global monthly PDSI for our study.  Similarly to Dai et al. (S20), we use soil water 
holding capacity (awc) data from S25. If awc is no more than 2.54 cm (or 1 in.), then awc is 
assigned to the top soil layer, and the bottom layer has zero capacity, otherwise, the top layer has 
2.54-cm water-holding capacity while the bottom layer has (awc - 2.54)-cm capacity.  For 
monthly air temperature, we smoothed monthly mean surface air temperature from NCEP/DOE 
II into half-degree spatial resolution.  For all precipitation data used in our study, we used 
monthly half-degree precipitation data generated by Chen et al (S26) based on gauge 
measurements at weather stations instead of that from NCEP/DOE II, since precipitation data 
from meteorological reanalysis datasets generally contain relatively large uncertainties (S27).  
We calculated half-degree PDSI from 1979 through 2009 but used PDSI from 2000 through 
2009 to reduce the effects of initial status (i.e., spin-up effects).  A lower PDSI generally implies 
a drier climate than a higher one. 
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Text S5) Contribution of global fire emissions to interannual CO2 growth rate 
and of nitrogen deposition to NPP 
 
       Global fire emissions account for a substantial fraction of the variability of CO2 growth rate 
(S28, S29).  Based on the most recent estimated global fire carbon emissions over the period 
1997-2009 (Table 7 in S30), the correlation between fire emissions and annual CO2 growth rate 
(S31) is 0.65 (p < 0.05).  For the period over 2000-2009, the correlation is still 0.65 (p < 0.05).  
This correlation, 0.65, is less strong than that between NPP and annual CO2 growth rate either 
from a previous study, -0.71 (p < 0.001) (S23), or from this study, -0.89 (p < 0.0006), implying 
NPP is more strongly correlated with annual CO2 growth rate than fire emissions.  In the tropics 
and subtropics, most fires are set by humans for land clearing (S32).  As climate regulates the 
amount of dry fuel available for ignition, it has a strong impact on the spatial and interannual 
variability of fire activity.  In some regions, such as Indonesia, drought-induced biomass burning 
is amplified by the fires set by humans for deforestation and agricultural expansion (S33).  The 
correlation between NPP and fire emissions is -0.55 (p < 0.1) from 2000 to 2009. 

 
       The impacts of nitrogen on the terrestrial carbon cycle are through three main mechanisms: 
enhanced photosynthesis, increased wood formation, and slowing soil decomposition (S34, S35).  
Since global nitrogen production and emissions continue to increase, and most nitrogen 
deposition occurs in the NH (S36), the increased NPP over the NH has some contributions from 
nitrogen fertilization, which may partially be reflected by the remotely sensed FPAR responding 
to enhanced canopy growth. 
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Text S6) Interannual variability of NPP 
 

Table S2 lists websites for those large-scale droughts mentioned in the paper but with no 
particular refereed publication on them; Figure S7 shows the spatial pattern of yearly NPP 
anomalies for the past 10 years. 

Table S2.  Websites reporting large-scale droughts mentioned in the paper without relevant 
refereed publications for citations. 

Region Year Webpage and Figure S6 
China 2000 http://english.mep.gov.cn/SOE/soechina2000/english/climate/climate_e.htm 
North America 2000 http://www.ncdc.noaa.gov/sotc/index.php?report=national&year=2000&month=ann 
North America 2002 http://www.ncdc.noaa.gov/sotc/?report=drought&year=2002&month=13&submitted

=Get+Report 
Australia 2002 http://www.wwf.org.au/news/n36/ 
Africa 2005 Figure S6 
Australia 2005 http://www.geo.uio.no/edc/downloads/the_australian_drought_of_2005_-

_offprint_of_wmo_bulletin_2005_54%283%29_156-162.pdf 
Australia 2007 http://www.bom.gov.au/climate/drought/archive/20090506.shtml 
Australia 2008 http://www.bom.gov.au/climate/drought/archive/20090506.shtml 
Australia 2009 http://www.bom.gov.au/climate/drought/archive/20090506.shtml 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
Figure S6.  Negative anomaly of growing season total 16-day NDVI anomaly in 2005 over many 
parts of Africa supports 2005 drought over many parts of Africa as shown in Figure S7.  We 
show NDVI anomaly because: 1) several reports on Internet about 2005 drought in Africa only 
mentioned East Africa, and 2) these reports were released in April 2005, not at the end of or after 
2005, while anomaly of NPP in Figure S7 is annual. 
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Figure S7.  Spatial pattern of NPP variations from 2000 to 2009.  Large-scale NPP negative 
anomalies were mainly caused by droughts. The reported droughts include: in 2000, droughts in 
large parts of North America, China;  in 2002, drought in North America and Australia; in 2003, 
heat wave in Europe; in 2005, severe droughts in Amazon and drought in Africa and Australia; 
from 2007 to 2009, drought in Australia.  
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Text S7) Trends in NPP and climate variables and their relationships 
 
        Tables S3 summarizes the trends of NPP, Tavg, Precipitation (Prcp), SWrad, and PDSI, and 
the correlations between NPP and different climatic variables for major latitudinal zones, two 
hemispheres and the globe.  Figure S8 through S10 show the spatial patterns of trends and 
changes of major climatic and remotely sensed variables, and the spatial correlations between 
NPP and major climatic variables.
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Table S3.  For the past decade (2000-2009), the linear trends of NPP, growing season air temperature (Tavg), precipitation (Prcp), 
downward solar radiation (SWrad), and Palmer Drought Severity Index (PDSI); and the correlations between  NPP and these climatic 
variables for different latitudinal zones, over both hemispheres and the globe.  All are area-weighted total or mean for vegetated land 
area only. 

Latitudinal zones 
(% NPP in Globe) 

NPP trend  Tavg trend 
Cor (NPP, Tavg) 

Prcp trend 
Cor (NPP, SWrad) 

SWrad trend 
Cor (NPP, SWrad) 

PDSI trend 
Cor (NPP, PDSI) 

47.5˚‐90.0˚N 
(19.1) 

Y =   0.021∙X‐32.516  Y= 0.086 ∙X ‐168.0009 
r = 0.55 

Y= 0.147 ∙X ‐12.34 
r = 0.38 

Y= ‐0.648 ∙X +4072.94 
r = ‐0.009 

Y= ‐0.0135∙ X + 27.238 
r = 0.25 

22.5˚‐47.5˚N 
(19.6) 

Y =   0.075∙X‐139.78  Y= 0.015∙X ‐16.11855 
r = ‐0.07 

Y= 3.781 ∙X ‐6987.65 
r = 0.90*** 

Y= 1.611∙X + 2524.053 
r = ‐0.36 

Y= 0.0895 ∙ X ‐ 180.15 
r = 0.76* 

  0.0˚‐22.5˚N 
(19.9) 

Y =   0.031∙X‐52.146  Y= 0.0315∙X ‐39.748 
r = ‐0.14 

Y= 9.061 ∙X ‐16781.23 
r = 0.31 

Y= ‐21.99 ∙X +50466.6 
r = ‐0.33 

Y= 0.022 ∙ X ‐ 44.69 
r = 0.20 

North Hemisphere 
(58.6) 

Y =   0.128∙X‐224.44  Y= 0.048 ∙X ‐84.218 
r = 0.48 

Y= 3.604 ∙X ‐6563.49 
r = 0.56 

Y= ‐5.155 ∙X +15021.8 
r = ‐0.84** 

Y= 0.031 ∙ X ‐ 62.13 
r = 0.39 

South Hemisphere 
(41.4) 

Y = ‐0.183∙X+388.566  Y= 0.056 ∙X ‐89.205 
r = ‐0.94*** 

Y= 3.090 ∙X ‐5028.45 
r = 0.50 

Y= ‐0.458 ∙X +7920.3 
r = ‐0.59 

Y= ‐0.116 ∙ X + 233.57 
r = 0.87** 

Globe 
(100.0) 

Y = ‐0.055∙X+164.124  Y= 0.050∙X ‐85.73 
r = ‐0.64* 

Y= 3.448 ∙X ‐6097.42 
r = 0.39 

Y= ‐3.731 ∙X +12868.3 
r = ‐0.32 

Y= ‐0.014 ∙ X + 27.81 
r = 0.48 

 
*: significant level of p < 0.05 
**: significant level of p < 0.01 
***: significant level of p < 0.001
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Figure S8. Annual total NPP variations and trends for different latitudinal zones and two 
hemispheres.  
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Figure S9.  Spatial pattern of trends in annual growing season (A) average Tavg, (B) total Prcp, 
(C) average VPD, (D) average PDSI, and (E) total SWrad with the location of a BSRN station, 
MAN. 
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Figure S10.  Spatial pattern of correlations between NPP and growing season (A) average Tavg, 
(B) total SWrad, (C) VPD, and (D) inverted PDSI. 
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Text S8) Detail study on tropical rainforests 
 
       Here we define tropical rainforests as Evergreen Broadleaf Forests (EBF) of MODIS land 
cover (Figure S2) within the area between the Tropic of Cancer and of Capricorn (23.5˚S- 
23.5˚N).  
 
 
 
 
 
 
 
Figure S11. The spatial distribution of the tropical rainforests defined as evergreen broadleaf 
forests in MODIS land cover (Figure S2), and spatial ranges of the three major rainforests in 
Amazon, Africa and Asia. Rainforests are green colored. 

 
      Based on MODIS land cover data, there are 14.07 Million km2 tropical rainforests, 
accounting for 13% of the global vegetated land. 10-year mean NPP for the tropical rainforests is 
15.48 PgC/yr, accounting for about one third (28.92%) of the global total NPP (Table S4). To be 
more specific, the three major tropical rainforest regions are defined as: Amazon (17.5°S-12°N, 
80°W-43°W), Africa (6.5°S-9°N, 13.5°W-40°E), and Asia (11°S- 23.5°N,73.5°E-162.5°E) 
(Figure S11). 
 
Table S4.  10-year (2000-2009) NPP (PgC/yr) for the globe, tropics, tropical rainforests and 
three major regional tropical rainforests [Amazon, Africa and Asia (Figure S11)]. 
 
 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 
Globe 54.692 53.841 52.727 53.465 54.565 51.672 53.557 53.123 53.725 53.841 
Tropics 30.089 28.850 28.153 28.423 29.249 26.419 28.615 27.890 28.708 29.090 
Tropical 
rainforests 

16.207 
 

15.525 
 

15.677 
 

15.808 
 

15.963 
 

14.625 
 

15.138 
 

14.915 
 

15.319 
 

15.608 
 

Amazon 
rainforests 

7.984 7.363 7.439 7.530 7.621 6.883 7.117 7.096 7.489 7.518 

African 
rainforests 

2.566 2.720 2.625 2.722 2.672 2.513 2.624 2.732 2.766 2.868 

Asian 
rainforests 

4.134 3.986 4.216 4.167 4.249 3.863 3.977 3.639 3.628 3.809 

 
 
      Based on Table S4, over the last 10-years, NPP in the tropics explains 93.0% (r2 = 0.93, p < 
0.0001) of interannual variations of the global NPP; Tropical rainforests explain 61.2% (r2 = 
0.612, p < 0.008) of interannual variations of the global NPP.  For the three major rainforests, 
Amazon, Africa and Asia explain 65.5% (r2 = 0.655, p < 0.005), 11.5% (r2 = 0.115, p < 0.5) and 
7.4% (r2 = 0.074, p < 0.5) of the global NPP interannual variations, respectively, though NPP of 
Amazon accounts for 13.8% of the global NPP.  Of the three major rainforests, only African 
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NPP had an increasing trend (0.189 PgC/10yr) mostly due to decreased VPD (Figure S9C), while 
the other two had decreasing trends with Amazon -0.424 PgC/10yr (Figure S12) and Asia -0.562 
PgC/10yr. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S12.  Inter-annual anomalies of GPP, NPP and autotrophic respiration of Amazon 
rainforests for the past decade with dotted line to denote 2005 drought. 
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Table S5.  For the past decade (2000-2009), the linear trends of NPP, growing season air temperature (Tavg), precipitation (Prcp), 
downward solar radiation (SWrad), and Palmer Drought Severity Index (PDSI); and the correlations between  NPP and other climatic 
variables for three major tropical rainforests [Amazon, Africa and Asia (Figure S11)].  All are area-weighted total or mean for 
vegetated land area only.  The annual mean air temperature (˚C) and total precipitation (mm/yr) are also put in parentheses of the first 
column. 

 
Rainforests 
(Tavg, Prcp) 

NPP trend  Tavg trend 
Cor (NPP, Tavg) 

Prcp trend 
Cor (NPP, SWrad) 

SWrad trend 
Cor (NPP, SWrad) 

PDSI trend 
Cor (NPP, PDSI) 

Amazon 
(23.8, 2249) 

Y =   ‐0.042∙X+92.49  Y= 0.0703 ∙X ‐117.096 
r = ‐0.79** 

Y= 12.844 ∙X ‐23497.1 
r = ‐0.07 

Y= ‐9.963 ∙X +26047.55
r = ‐0.27 

Y= ‐0.02∙ X + 39.699 
r = 0.53 

Africa 
(23.9, 1678) 

Y =   0.019∙X‐35.21  Y= 0.029∙X ‐34.823 
r = ‐0.06 

Y= 3.348 ∙X ‐5033.99 
r = 0.52 

Y= 3.943∙X ‐2125.172 
r = 0.09 

Y= ‐0.086 ∙ X + 171.25 
r = 0.43 

Asia 
(24.7, 2564) 

Y =   ‐0.056∙X+116.70  Y= 0.0003∙X +24.01 
r = 0.20 

Y= 15.92 ∙X ‐29339.06 
r = ‐0.77** 

Y= ‐45.08 ∙X +96432.8 
r = 0.95*** 

Y= 0.041 ∙ X – 81.43 
r = ‐0.41 

*: significant level of p < 0.05 
**: significant level of p < 0.01 
***: significant level of p < 0.001
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Text S9) Amazon 2005 drought 
 
       Saleska et al (S37) reported that Amazon rainforests green-up during 2005 drought as there 
was higher Collection 4 (C4) EVI during dry season from July to September (JAS).  Using EVI 
data in dry season of JAS can greatly reduce the issue of severe cloud contaminations in 
rainforests of the Amazon (S37). Samanta et al (S38) used the Collection 5 (C5) EVI and found 
there was no clear green-up in 2005.  Here we examined changes of C5 FPAR/LAI, related 
climate variables, and resulting GPP and NPP changes in 2005 over Amazon rainforests.  All the 
FPAR/LAI were cleaned to remove the cloud-contamination pixels (S10).  Figure S13A shows 
spatial C5 FPAR changes in 2005 relative to the pre-2005 during JAS.  Clearly, most areas 
exhibited “green-up”.  Though FPAR was higher in 2005, annual total NPP reduced (Figure 
S13B), which is largely consistent with many reductions of the rates of changes in the field 
measured above ground biomass (Figure S13C from Fig. 3C of S39).  Note that for MODIS data, 
the pre-2005 is 2000 through 2004, while S39 refers pre-2005 as 1998 through 2004. 

 
       To explore why higher FPAR in 2005 had a reduced NPP, we further examined the related 
variables.  We did this at two temporal scales, one for the dry season (JAS) of the Amazon, and 
the other is for annual.  We first calculated the standardized variable for each pixel (0.5 degree 
for climate variables and 1-km for other variables) over the last 10 years so that different 
variables can be comparable; then we got the area-weighted average of standardized variable 
over rainforests of the Amazon.  Figure S14 shows area-weighted standardized variable of these 
variables over the last 10-years.  During the dry season (JAS) of 2005, SWrad and VPD were the 
highest, while Prcp and PDSI were the lowest, implying that JAS in 2005 was the driest dry 
season for the past 10 years.  Though in 2005, FPAR/LAI were the second highest during dry 
season, and the highest at yearly level in 2005, highest VPD induced lowest fVPD, greatly 
reducing GPP, and also the highest annual air temperature in 2005 induced the highest MRI and 
thus plant respiration (S40, S41).  As a result, 2005 had the lowest NPP for the last 10-years in 
Amazon.  Though it is unclear what caused higher FPAR/LAI in 2005, the general agreement of 
reduced NPP with the field data in 2005 reveals: 1) in some cases, remotely sensed greenness is 
not a proxy for NPP; 2) and remotely sensed NPP models require accounting for environment 
stresses and plant respiration. 
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Figure S13. A) Collection 5 FPAR 
changes from July to September in 
2005 relative to the period from 2000 
through 2004; B) annual NPP changes 
relative the period from 2000 through 
2004; and C) changes in the rates of 
above ground biomass relative to pre-
2005 (1998-2004) (C is from Fig. 3C 
of S39).  In A and B, results for pixels 
of rainforest (Figure S11) are only 
showed. 
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Figure S14.  Area-weighted standardized variable for different climatic variables, derived 
biophysical variables, FPAR/LAI, GPP/NPP and autotrophic respiration for Amazon rainforests 
over the last decade.  Left panel is for the dry season from July to September and right for the 
annual.  Dotted vertical lines show drought of year 2005.  The biophysical variables fVPD and 
MRI are defined in Equation 1, 4 and 5. 
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Text S10) Theoretical explanation on the sensitivity of water stress and plant maintenance 
respiration to different temperature levels 
 

Saturation vapor pressure ( SVP , in Pascal) is a function of air temperature (T , in 
Celsius) (S42), 

)
97.240

*502.17exp(611
+

∗=
T

TSVP       (6) 

 
The derivation of SVP with respect to T is 
 

2)97.240(
97.240502.17

T
SVP

dT
dSVP

+
∗

∗=       (7) 

 
Maintenance respiration index ( MRI ) is a function of air temperature (T , in Celsius) 

(S3), 
 

)
10

20(
10

−
=

T
QMRI         (8) 

 
When 10Q is a constant value 2.0, it is applied to fine root and live wood components, and the 
derivation of MRI with respect to T is 
 

10
0.2ln

∗= MRI
dT

dMRI         (9) 

 
When 10Q is not constant but a function of temperature (acclimation effect) for leaves (S5), 
 
  TQ ∗−= 046.022.310        (10) 
 
the derivation of MRI with respect toT is 
 

⎥
⎦

⎤
⎢
⎣

⎡ ∗−
+

∗−∗
−

=
10

)046.022.3ln(
)046.022.3(10

)20(*046.0* T
T

TMRI
dT

dMRI   (11) 

 
Table S6.  Monthly and annual air temperature for vegetated land areas of the two hemispheres, 
North Hemisphere (NH) and South Hemisphere (SH). 
 
 Jan  Feb  Mar  Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  Dec  mean 

NH  ‐1.412  0.048  4.329  9.523  14.437 18.390 20.363 19.283 15.585 9.976 4.031  ‐0.386 9.514

SH  24.439  24.068  23.168  21.528  19.157 17.556 17.327 19.035 21.333 23.076  23.816  24.264 21.564
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Text S11) Calculation of temperature-limited vegetated area and their NPP 
 

Figure S10A was used to calculate temperature-limited vegetated area and corresponding 
NPP.  However, some positive correlations in the figure are not temperature-limited but solar 
radiation as there is a strong positive correlation between SWrad and temperature in many cases. 
To further rule out these non-temperature limited areas, we used average snow cover free days 
(Figure S3).  The criteria for temperature limited area are these pixels with at least one month 
snow cover on average (32 days) and a positive correlation between NPP and temperature 
(Figure S10A). Based on the criteria, the temperature limited vegetated area is 26.5 Mkm2, 
accounting for 24.3% of the global vegetated land area; the corresponding total average annual 
NPP is 8.6 PgC/yr, accounting for 16.1% global total NPP. 
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