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Abstract

MODIS primary production products (MOD17) are the first regular, near-real-time data sets for repeated monitoring of vegetation primary

production on vegetated land at 1-km resolution at an 8-day interval. But both the inconsistent spatial resolution between the gridded

meteorological data and MODIS pixels, and the cloud-contaminated MODIS FPAR/LAI (MOD15A2) retrievals can introduce considerable

errors to Collection4 primary production (denoted as C4 MOD17) results. Here, we aim to rectify these problems through reprocessing key

inputs to MODIS primary vegetation productivity algorithm, resulting in improved Collection5 MOD17 (here denoted as C5 MOD17)

estimates. This was accomplished by spatial interpolation of the coarse resolution meteorological data input and with temporal filling of

cloud-contaminated MOD15A2 data. Furthermore, we modified the Biome Parameter Look-Up Table (BPLUT) based on recent synthesized

NPP data and some observed GPP derived from some flux tower measurements to keep up with the improvements in upstream inputs.

Because MOD17 is one of the down-stream MODIS land products, the performance of the algorithm can be largely influenced by the

uncertainties from upstream inputs, such as land cover, FPAR/LAI, the meteorological data, and algorithm itself. MODIS GPP fits well with

GPP derived from 12 flux towers over North America. Globally, the 3-year MOD17 NPP is comparable to the Ecosystem Model–Data

Intercomparison (EMDI) NPP data set, and global total MODIS GPP and NPP are inversely related to the observed atmospheric CO2 growth

rates, and MEI index, indicating MOD17 are reliable products. From 2001 to 2003, mean global total GPP and NPP estimated by MODIS are

109.29 Pg C/year and 56.02 Pg C/year, respectively. Based on this research, the improved global MODIS primary production data set is now

ready for monitoring ecological conditions, natural resources and environmental changes.

D 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Vegetation primary production is vital to human society

not only because it provides essential materials, such as

food, fiber and wood, but also because it creates environ-

ments suitable for human inhabitation. Primary production

has received more attention in recent years because it is

directly related to the global carbon cycle. The atmospheric

concentration of CO2 has increased by 31% since 1750

(IPCC, 2001) due to human activities, and the increased
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CO2 in atmosphere can alter the energy balance of land

surface resulting in changing climate system (Knutson et

al., 2000; Scott et al., 2000). The terrestrial biosphere can

sequester significant amounts of atmospheric CO2 (Fan et

al., 1998; Wofsy et al., 1993), and this process is largely

influenced by increased atmospheric CO2 and changing

climate (Nemani et al., 2002, 2003; Schimel et al., 2000).

The magnitude and the cause of C uptake are still

uncertain (Barford et al., 2001), and understanding the

carbon cycle on regional and global scales requires spatial

and temporal monitoring of earth surface processes

(Running et al., 1999). The MODerate Resolution Imaging

Spectroradiometer (MODIS) is one of the primary global

monitoring sensors on NASA Earth Observing System
ent 95 (2005) 164–176
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(EOS) satellites and includes improved geolocation,

atmospheric correction and cloud screening provided by

MODIS science team. The TERRA, EOS-AM platform

was launched on December 19, 1999 and began opera-

tionally providing global primary production products

(namely, MOD17) on an 8-day interval with a nominal

1-km resolution beginning on Feb 24, 2000.

Traditionally, most studies of NPP based on satellite

data have used an empirical regression relationship

between Normalized Difference Vegetation Index (NDVI)

over a growing season with NPP or Above-ground NPP

(ANPP) (Goward et al., 1985; Paruelo et al., 1997; Tucker

et al., 1986). However, the year-to-year relationship

between NDVI derived and ANPP is greatly variable

(Briggs et al., 1998; Diallo et al., 1991; Wylie et al.,

1991), and the empirical relationship is likely altered by

interannual variations in climate or management (Briggs et

al., 1998). Therefore, estimating NPP from satellite data

must account for climate conditions, and process models

based on satellite data need to be developed. Many studies

have found that NDVI is related to Absorbed Photo-

synthetically Active Radiation (PAR) (Asrar et al., 1984;

Kumar & Monteith, 1982; Sellers, 1987). Based on the

theory suggested by Monteith (1972, 1977) that NPP

under non-stressed conditions is linearly related to the

amount of absorbed PAR (APAR), and the physiological

principles proposed by Jarvis and Leverenz (1983) that

respiration losses must be included in the NPP model,

global scale process NPP models based on NDVI have

been created (Potter et al., 1993; Prince, 1991; Ruimy et

al., 1994; Running & Hunt, 1993; Running et al., 1994).

Some recent models have added environmental resource

controls on NPP (Field et al., 1995; Prince & Goward,

1995). The MOD17 algorithm has developed as a result of

these past achievements and lessons learned from a

general ecosystem model, BIOME-BGC (Running et al.,

2000). A detailed description of the algorithm can be

found elsewhere (Heinsch et al., 2003; Running et al.,

2004).

The current version of MODIS primary productivity

product is C4 MOD17 and there are nearly 4 years of

data. However, some shortcomings exist in the C4

MOD17 products. First, the C4 MOD17 operational

process fails to account for the mismatching spatial

resolution between a 1-km MODIS pixel and the

corresponding 18�1.258 meteorological data from the

Data Assimilation Office (DAO). Secondly, the C4

MOD17 process produces GPP and NPP regardless of

errors caused by contaminated or missing 8-day FPAR/

LAI (MOD15A2) mainly due to cloud cover or sensor

malfunction. These contaminated or missing MOD15A2

can introduce considerable error to 8-day MODIS GPP

and therefore to annual GPP and NPP. Thirdly, the C4

MOD17 Biome Parameter Look-Up Table (BPLUT) was

primarily developed at MODIS launch, and it was tested

using different upstream inputs from those operationally
being used (Running et al., 2000), which leads to different

results. Finally, C4 MOD17 contains a meaningless

annual quality assessment control (QC), in that a constant

fill value is being used across all pixels because there

were insufficient data at launch to establish meaningful

annual QC values.

The objectives of this paper are: (1) to give a brief

introduction to the MOD17 products and discuss uncer-

tainties in them, (2) to describe the methods used to

resolve known problems in C4 MOD17, and (3) to show

some (Collection5) C5 MOD17 results from 2001 to 2003

as well as some validation results by comparison with GPP

derived from 12 flux towers, Ecosystem Model–Data

Intercomparison (EMDI) NPP data set, Multivariate ENSO

Index (MEI), and global CO2 growth rate.
2. The MOD17 products

2.1. Brief introduction

The MOD17 algorithm provides the first operational,

near-real-time calculation of global GPP and NPP products

from EOS MODIS sensor. It has two subproducts: (1)

MOD17A2, storing 8-day composite GPP, net photosyn-

thesis (PsnNet) and corresponding QC, and (2) MOD17A3,

which contains annual NPP and QC. These products are

saved as formatted HDF EOS files (http://hdfeos.gsfc.

nasa.gov) in a two-dimensional array with 1200 columns

and 1200 rows in a Sinusoidal projection. In order to

reduce data volume, the data are stored as signed or

unsigned 2-byte integer data. Users need to be cautious

about the data type, scale factor (gain), offset and units so

that the data are restored correctly. These data are freely

available to the public from the Numerical Terradynamic

Simulation Group (NTSG) (http://www.ntsg.umt.edu) or

the EROS Data Center Distributed Active Archive Center

(EDC DAAC).

Users should note that the composite MOD17A2 is an 8-

day summation of GPP and PsnNet, and annual GPP and

NPP for MOD17A3 are annual summations of two

variables. Additionally, PsnNet is defined as,

PsnNet ¼ GPP� Rml � Rmr ð1Þ

where Rml and Rmr are maintenance respiration by leaves

and fine roots, respectively. Growth respiration is not taken

into account in 8-day PsnNet. Annual NPP is expressed as,

NPP ¼
X365
i¼1

PsnNet� Rmo þ Rg

� �
ð2Þ

where Rmo is maintenance respiration by all other living

parts except leaves and fine roots (e.g., livewood), and Rg is

growth respiration.

The QC field in MOD17A2 is inherited from MOD15A2,

and each pixel’s QC value denotes the sensor and cloud

http://www.hdfeos.gsfc.nasa.gov
http://www.ntsg.umt.edu
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conditions, as well as the algorithm used to derive

corresponding composite FPAR/LAI (Myneni et al.,

2002). The MOD17A3 QC field is defined in Section 3.5.

2.2. Uncertainties from inputs and algorithm

There are three sources of MOD17 inputs. For each

pixel, biome type information is derived from MODIS land

cover products (MOD12Q1); daily meteorological data are

derived from the DAO data set; and FPAR and LAI are

obtained from MOD15A2. The uncertainties in MOD12Q1,

DAO, MOD15A2, and the algorithm itself would all

influence MOD17 results.

First, MOD12Q1 accuracies are falling in the range of

70–80%, and most bmistakesQ are between similar classes

(Strahler et al., 2002). For a pixel with misclassified land

cover, a misuse of parameters from MOD17 BPLUT will

occur, resulting in less reliable MOD17 results. Another

problem is that the current 1-km MODIS global land cover

classification unit may be too general for local application.

Croplands, for example, are very diverse, yet the same set of

parameters is applied indiscriminately to cropland every-

where, introducing large uncertainties for some crops in

some regions.

Secondly, DAO is an assimilated meteorological data set

not observed data. As a result, it may contain systematic

errors in some regions. Uncertainties in meteorological data

are largely responsible for the bunrealisticQ negative NPP in

some small regions. For these pixels located in harsh

environments, overestimated temperature alone, for exam-

ple, can be enough to produce negative NPP, because higher

temperature results in higher respiration and lower GPP due

to the higher Vapor Pressure Deficit (VPD) calculated by

overestimated temperature. If respiration is greater than

GPP, negative NPP will be produced. Because the MOD17

algorithm is very sensitive to meteorological inputs, a more

detailed discussion of this aspect can be found elsewhere

(Zhao et al., 2005).

For MOD15A2, the pixel-by-pixel comparison with the

ground measurements has a poor correlation and retrieved

LAI tends to be overestimated under most conditions (Wang

et al., 2004). Comparison at the patch level can significantly

improve the results, but retrieved LAI still tends to be higher

(Wang et al., 2004). In the MOD17 algorithm, FPAR is

directly related to assimilation and LAI is only related to

respiration; an overestimated LAI from MOD15A2 may

result in an underestimated NPP even if FPAR is relatively

accurate. Although the temporal filling of unreliable FPAR/

LAI greatly improves the accuracy of inputs, as discussed in

Section 3.2 below, the filled values are artificial and contain

uncertainties.

Finally, weaknesses in the MOD17 algorithm may lead to

uncertainties in GPP/NPP. For example, there is still little

known about the actual value of some parameters in the

BPLUT, such as fine root maintenance respiration base and

biomass ratio of fine root to leaf.
All three upstream inputs and the algorithm itself can

introduce uncertainties to MOD17. In some regions, or

during some seasons, these uncertainties may be large.
3. Improvements to C4 MOD17

3.1. Spatial interpolation of DAO

Because of the near-real-time and computer efficiency

requirements of global MODIS products, daily meteorolog-

ical data input must be provided in real time with a

relatively coarse spatial resolution. MOD17 uses daily DAO

as meteorological inputs. The core assimilation system

for the DAO data is the Goddard EOS Data Assimilation

System (GEOS-DAS), which uses General Circulation

Model (GCM) outputs, boundary conditions (sea surface

temperature, terrain, etc.) and surface observations to form

a regular gridded meteorological data set (Atlas & Lucchesi,

2000). The DAO version currently being used is GEOS402

and the original data set is global daily data with

1.008�1.258 spatial resolution and a 3-h interval. From

this, the MOD17 algorithm derives daily minimum temper-

ature (Tmin), average temperature (Tavg), daytime average

temperature (Tday), daily actual vapor pressure (AVP),

daytime averageVPD and total shortwave radiation

(SWrad).

In the C4 MOD17 algorithm, each 1-km pixel falling into

the same 1.008�1.258 DAO grid cell will inherit the same

meteorological data, creating a noticeable DAO footprint

(Fig. 1a,c). Such treatment, on global or regional scale, may

be acceptable, but at the local scale, especially for the terrain

with topographical variation or located at relatively abruptly

climatic gradient zones, it may cause large inaccuracies.

To enhance the meteorological inputs, we have interpo-

lated coarse resolution DAO data down to the 1-km MODIS

pixel level. The four DAO cells surrounding a given 1-km

MODIS pixel are used in the interpolation algorithm (Fig.

2). The use of four DAO cells per 1-km MODIS pixel will

not slow down the computational efficiency of MOD17

datastream, and reasonably assumes more minimal elevation

variation within four DAO cells than any great number of

DAO cells.

Although there are many formulae for non-linear spatial

interpolation, for simplicity, we chose a cosine function,

which constrains the result between 1 and 0 if the input

variable is between 0 to k/2. As the function did not

effectively eliminate DAO cell boundary lines in a

MOD17 image, we tried to use its second, third and

fourth power to increase the weighing value of the nearest

DAO cell. Finally we found its fourth power form

successfully removed DAO footprint even in region with

abrupt climatic gradients:

Di ¼ cos4 k=2ð ÞT di=dmaxð Þ
� �

i ¼ 1; 2; 3; 4 ð3Þ



Fig. 1. An example of the influence of spatial interpolation/non-interpolation, and temporal filling/non-filling MOD15A2 on MODIS NPP. The region is part of

MODIS 108 tile H10V08 located near the Amazon basin and has been reprojected to geographical projection. The dominant MODIS land cover for the region

is evergreen broadleaf forest and woody savannas.
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where Di is the non-linear distance between the 1-km

MODIS pixel and any one of the four surrounding DAO

cells, di is the great-circle distance between the 1-km pixel

and the same DAO cell, and dmax is the great-circle

distance between the two farthest DAO cells of the four
Fig. 2. Spatial interpolation of coarse DAO to 1-km pixel resolution.
being used (Fig. 2). This ensures that Di=1 when di=0,

and Di=0 when di=dmax. Based on the non-linear distance

(Di), the weighted value Wi can be expressed as

Wi ¼ Di=
X4
i¼1

Di ð4Þ

and, for a given pixel, the corresponding smoothed

variable, V, (i.e., interpolated Tmin, Tavg, Tday, AVP,

SWrad) is

V ¼
X4
i¼1

Wi
*Vi

� �
ð5Þ

VPD is derived from the interpolated Tday and AVP.

Theoretically, this DAO spatial interpolation improves

the accuracy of meteorological data for each 1-km pixel

because it removes these abrupt changes from one side of

a DAO boundary to the other, as used by C4 MOD17. Fig.

1 shows how this method makes embedded DAO cell

effects disappear from C5 MOD17 image. The degree to

which this interpolated DAO will improve the accuracy of

meteorological inputs, however, is largely dependent on

the accuracy of DAO data and local environmental

conditions, elevation and weather patterns. To explore this

question, we use observed daily weather data from the

World Meteorological Organization (WMO) daily surface



Fig. 3. Distribution of WMO surface observation stations (nN5000) from 2000 to 2004 for evaluation of spatial interpolation.
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observation network (N5000 weather stations, Fig. 3) to

compare changes in root mean squared error (RMSE) and

correlation (COR) between the original and enhanced

DAO data for 2000–2003.

As a result of the smoothing process, the percent of

WMO stations with increased RMSE and increased COR

are, on average, 29% (i.e., 71% stations have reduced

RMSE) and 81%, respectively, relative to the original data

as both compared with the observations (Fig. 4). For most

of WMO stations, spatial interpolation reduced RMSE and

increased COR, suggesting that the non-linear spatial

interpolation considerably improves DAO inputs.

3.2. Temporal filling of unreliable MOD15A2

Despite the fact that the MOD15A2 product is an 8-day

composite based on the maximum value of FPAR and

corresponding LAI, there are still cloud-contaminated

FPAR/LAI for some pixels during some periods (Myneni
Fig. 4. Percent of WMO stations with increased RMSE and COR by spatial inte

2004 years.
et al., 2002). In most of these cases, input FPAR/LAI tend to

be underestimated due to cloud effects, and this will

subsequently introduce considerable error to 8-day GPP/

PsnNet as shown in Fig. 5, and thereafter to annual GPP/

NPP fields. The MOD15A2 product has two QC fields

denoting cloud state, snow/ice presence, and the algorithm

employed, called quality assessment fields. According to the

MOD15A2 quality assessment scheme provided by Myneni

et al. (2002), FPAR/LAI values retrieved by the main

algorithm (i.e., Radiation Transfer process, denoted as RT)

are most reliable, and those retrieved by the back-up

algorithm (i.e., the empirical relationship between FPAR/

LAI and NDVI) are less reliable because the back-up

algorithm is employed mostly when cloud cover, strong

atmospheric effects, or snow/ice are detected. In the case of

snow cover, however, NDVI will be low simply because a

large part of incoming solar radiation is reflected, and

FPAR, therefore, would have a low value regardless of the

algorithm used.
rpolation in comparison to that by non-spatial interpolation from 2000 to



Fig. 5. Two examples on how temporal filling unreliable 8-day FPAR and LAI, and thereafter improved 8-day GPP and PsnNet for one MODIS 1-km pixel

located in Amazon (AMZN) basin (lat=�5.0, lon=�65.0), and another located in Montana, USA (MTUS) (lat=46.754, lon=�113.829), respectively. The mark

dBT above some 8-day accepted FPAR in Montana figure denotes the FPAR was derived from MOD15 back-up algorithm under snow/ice cover but no cloud

cover. MODIS land cover for AMZN is evergreen broadleaf forest (EBF), and evergreen needle forest (ENF) for MTUS. In 2002, for AMZN, the improved

annual GPP and NPP are 2759 g C/m2/year and 914 g C/m2/year, respectively, in comparison to corresponding original annual GPP and NPP of 2252 g C/m2/

year and 871 g C/m2/year. Similarly, for MTSU, the improved annual GPP and NPP are 695 g C/m2/year and 290 g C/m2/year against original annual GPP of

655 g C/m2/year and NPP of 294 g C/m2/year.
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To separate reliable and unreliable FPAR/LAI from the

annual time series data array, for a given MODIS pixel, we

have developed criteria based on the above information and

our own analysis. For LAI, those periods without a cloud
flag and derived by RT algorithm would be reliable; FPAR

is slightly more complex. If no snow/ice is detected, FPAR

derived by RT and without cloud flag would be considered

reliable in the same way as employed for LAI. However, if
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snow/ice are detected, only these FPAR without cloud flags

would be chosen as reliable, regardless of whether the RT or

back-up algorithm was used.

In addition to error introduced by contaminated FPAR/

LAI, errors arise from missing periods of MODIS data due

to malfunction of the MODIS sensor. In June 2001, for

example, there are 2 or 3 periods of missing FPAR/LAI

values, depending on the MODIS tile location. Given the

contaminated or missing FPAR/LAI, it is necessary to

reconstruct FPAR/LAI profile to enhance inputs to MOD17.

There are several methods widely used to reconstruct

remotely sensed vegetation index time profiles, such as

Best Index Slope Extraction (BISE) (Viovy et al., 1992),

Fourier wave adjustment (Sellers et al., 1994), polynomial

fitting (Karnieli et al., 2002), and piecewise logistic

function fitting (Zhang et al., 2003). Unlike AVHRR,

however, MODIS Level 3 land products have quality

assessment fields as mentioned above, so there is no need

to find and replace contaminated MODIS data by BISE.

Additionally, we assume reliable FPAR/LAI are accurate

enough for further use. The proposed mathematical fitting

methods listed above, on the other hand, would eventually

change reliable values. Hence, we use a simple linearly

interpolation to fill unreliable or missing data based on

reliable FPAR/LAI. The process entails two steps (see Fig.

5): (1) if the first (or last) 8-day FPAR/LAI is unreliable or

missing, it will be replaced by the closest reliable 8-day

value. This step ensures that the second step can be

performed; (2) other unreliable FPAR/LAI will be replaced

by linear interpolation of the nearest reliable value prior to

it and the closest reliable value after it. If there are no

reliable FPAR/LAI during the entire year, the annual

maximum FPAR and corresponding LAI will be chosen

from unreliable periods in current year, and they will be

used as a constant value across the entire year. This

exceptional case occurs for only a few pixels in tropical

evergreen forest due to extreme cloud cover, and in

tropical barren margin areas probably because of sparsely

vegetated land cover or dust atmospheric conditions.

Fig. 5 illustrates how this temporal filling approach is

applied to a MODIS pixel in the Amazon region where

higher frequency and persistence of cloud cover exists,

and another pixel in Montana, USA where severe snow

and cloud cover usually occurs in winter, and low

frequency of cloud cover appears in summer. For

Montana site, before Julian day of 137 in 2002, due to

cloud or severe snow/ice cover, all 8-day unreliable LAIs

derived by MOD15 back-up algorithm are filled by

reliable LAI value (1.1 m2/m2) for 8-day 137. But for

FPAR, before Julian day of 137, some 8-day FPARs,

derived by MOD15 back-up algorithm under snow cover

but no cloud cover (with a mark dBT above the value in

Fig. 5), are accepted under our criterion described above.

These FPARs (around 20%) tend to be lower correspond-

ing to the LAI of 1.1 m2/m2 according to Beer’s law

(Monsi & Saeki, 1953) and light extinction coefficient of
approximately 0.51 for evergreen needle forests (White et

al., 2000), simply because of lower NDVI for snow/ice

covered surface and higher LAI hidden beneath the snow/

ice. This phenomenon did not exist in later 2002, which

leads to the discrepancy in Montana FPAR between year

begin (21%) and year end (65%). As depicted in Fig. 5,

contaminated FPAR/LAI were greatly improved as the

result of the filling process. Some unusual 8-day periods

remain, which have lower FPAR/LAI with good QC or

have higher FPAR/LAI with bad QC. In spite of this, QC

fields from MOD15A2 are the only available source to

distinguish between reliable and unreliable FPAR/LAI

estimates. Improved FPAR/LAI inputs lead to enhanced

MOD17 GPP and PsnNet. Under most conditions, 8-day

composite GPP increases because the temporal filling

process generally acts to increase FPAR. Changes in 8-

day PsnNet, however, depend on the changes in both

FPAR and LAI because improved FPAR/LAI lead to

increases in not only GPP but also respiration (Heinsch et

al., 2003). In addition, it is evident that the degree of the

improvement is largely dependent on the region and

season. Regions or seasons with higher cloud cover will

have greater enhancements. As shown in Fig. 5, the site

in the Amazon, for example, in 2002, had improved

annual GPP and NPP of 2759 g C/m2/year (If no units

mentioned, all annual GPP and NPP units are g C/m2/year

hereafter) and 914, respectively, in comparison to the

original GPP of 2252 and NPP of 871. The site with a

lower frequency of cloud cover during the growing season

will have fewer or almost no improvements, such as the

site located in Montana, had improved GPP of 695 and

NPP of 290 in comparison to the original GPP of 655 and

NPP of 294.

Unfortunately, this temporal filling of FPAR/LAI can

only be performed if an entire year of 8-day FPAR/LAI

values is available. This limits the application of

Collection5 MOD17A2 product to retrospective analysis.

For MOD17A3 (i.e., annual GPP/NPP), however, it is

applicable. For this reason, at the beginning of each

calendar year, after all of the previous year’s 8-day

MOD15A2 are available, we reprocess the previous year’s

8-day MOD17A2 based on the above two methods to

improve the MOD17A2 product, and simultaneously

produce an improved MOD17A3.

3.3. Combination of improved DAO and MOD15A2 data

Fig. 1 illustrates how the above improvements of

meteorological data and FPAR/LAI inputs work together

to enhance MOD17A3 NPP. The 4 subfigures are based on

4 schemes, (a) no spatial interpolation of DAO and no

temporal filling of FPAR/LAI (Fig. 1a), (b) spatial

interpolation of DAO with no temporal filling of FPAR/

LAI (Fig. 1b), (c) no spatial interpolation of DAO with

temporal filling of FPAR/LAI (Fig. 1c), and (d) spatial

interpolation of DAO with temporal filling of FPAR/LAI
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(Fig. 1d). Spatially interpolating DAO eliminates the

unrealistic DAO footprint on the image and enhances

MOD17 accuracy. Temporally filling unreliable FPAR/LAI

enhances MOD15A2 inputs, and consequently improves

MOD17, leading to increases in NPP, especially for these

pixels located in regions of more frequent cloud cover.

Annual MOD17A3 GPP and 8-day MOD17A2 GPP and

PsnNet are similarly affected. These two approaches

enhance MOD17 in different ways but produce more

reliable MODIS primary production products.

3.4. Recalibration of the BPLUT

The C4 MOD17 BPLUT was parameterized using a

global simulation of the general ecosystem model,

BIOME-BGC, and calibrated to different meteorological

data set and FPAR/LAI prior to launch (Running et al.,

2000). The MOD17 primary production is sensitive to

meteorological data (Zhao et al., 2005) and differences in

FPAR/LAI data set inputs (Nemani et al., 2003). Fur-

thermore, both DAO and MOD15A2 have been improved

since launch, resulting in consistent and stable data sets.

As a result, the BPLUT needed recalibrated with simu-

lation of global GPP/NPP using complete 3-year

MOD15A2 and DAO data as inputs.

Rather than directly using field measurements of NPP to

calibrate the model, synthesized NPP data for different

biomes (Olson et al., 2001; Roy et al., 2001; Clark et al.,

2001) were used as baseline to recalibrate the BPLUT,

because field NPP data were measured using various

methods, in different years, stands and environments.

Furthermore, most of these measurements were limited to

aboveground NPP, on small scale, and on good stands with

higher-than-average production than the average (Jarvis

et al., 2001). Synthesized NPP data are inferred from these

existing field data and current knowledge of carbon

allocation patterns for different NPP components (Clark et

al., 2001; Gower et al., 1997, 2001; Olson et al., 2001).

Direct use of unevenly distributed field data to calibrate

ecological parameters of regional or global model, therefore,

is not as valuable as the use of synthesized NPP.

The recalibration process involves four steps. First, to

speed the process, we build a 0.58 global land cover by

choosing the dominant land cover type within each 0.58
region based on 1-km MOD12Q1. For FPAR/LAI, we

perform temporal filling of unreliable periods to enhance the

contaminated values, and then we create a global improved

0.58 8-day FPAR/LAI data set from 1-km enhanced

MOD15A2 by averaging these 1-km pixels with the same

land cover as the dominant land cover. Second, we run

global MOD17 at 0.58 based on this 0.58MODIS land cover

and 8-day MOD15A2, produce histograms and calculate

mean annual GPP/NPP for the different land cover types.

Third, we compared global mean MODIS GPP for the

different land cover types with observed mean GPP data

from 12 flux tower sites in 2001 (Heinsch et al., 2005;
Turner et al., 2003a,b). Finally, we compared global mean

NPP with a recent NPP summary for different biomes (Clark

et al., 2001; Roy et al., 2001), and EMDI NPP data (Olson

et al., 2001). For a given biome, if the differences between

modeled and observed GPP and synthesized NPP are

significant, parameters in BPLUT for the corresponding

biome will be changed, repeating the last three steps until

the differences are negligible. Compared with C4 BPLUT,

Specific Leaf Area (SLA) and maximum VPD were

changed for most biomes. Adjustment of VPD control

effectively corrected GPP when compared to that derived

from eddy flux observations. Altering the SLA can easily

make MODIS NPP comparable to synthesized NPP data.

The modified VPD and SLA values are within a typical

range for a given land cover type (Hoffmann & Franco,

2003; Poorter, 2001; White et al., 2000). The C5 BPLUT

can be found in MOD17 User’s Guide (Heinsch et al.,

2003).

3.5. Addition of annual GPP and meaningful annual QC

We have added an annual GPP field to C5 MOD17A3 to

free users from the labor required in getting annual GPP by

summation of all 46 8-day GPP values from MOD17A2.

The 8-day MOD17A2 QC field is inherited from

MOD15A2 in the same period. For annual MOD17A3

products, however, there was not enough data to define

annual QC at launch and a constant value (33) was used

across all vegetated pixels. For C5 MOD17, we have created

a more meaningful annual GPP/NPP QC, expressed as

QC ¼ NUg=TOTALg

� �
*100 ð6Þ

where NUg is the number of days during growing season

with unreliable or missing MODIS LAI inputs, andTOTALg

is total number of days in the growing season. The growing

season is defined as all days with Tmin above �8 8C, which
is also used as the minimum temperature control on

photosynthesis for all biomes in the BPLUT. Although

there is respiration when Tmin below �8 8C and LAI is

above 0, its magnitude is negligible due to both low LAI

and low temperature during non-growing season days. Since

the annual QC definition is limited to data in the growing

season, the number of unreliable LAI values caused by

snow cover will contribute much less to the QC than those

caused by cloud cover. Therefore, the annual MOD17A3

QC mainly reveals how many growing days (%) use

artificially filled FPAR/LAI due to cloud cover to calculate

8-day GPP and annual GPP/NPP. Users can infer the

reliability of annual GPP/NPP based on the corresponding

annual QC field.

The annual QC image in Fig. 6c shows the average

annual QC from 2001 to 2003 and clearly demonstrates

that tropical forest areas, western Europe, East Asian

monsoon regions and the Pacific Northwest have higher

values (less reliable annual GPP/NPP). Relatively dry



Fig. 6. Three-year (2001–2003) mean global 1-km MODIS annual GPP, NPP and annual QC images (annual QC denotes percent of 8-day with filled FPAR/

LAI as input to MOD17 algorithm due to cloud contamination).
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regions with biomes such as shrublands, grasslands or

savannas have lower QC values and, therefore, more

reliable annual GPP/NPP.
4. Results and validation of GPP and NPP

4.1. Results from 2001 to 2003

The 3-year (2001–2003) average annual global 1-km

improved GPP, NPP and QC images are shown in Fig. 6.

As expected, MODIS GPP and NPP have high values in

areas covered by forests and woody savannas, especially

in these tropical regions. Low NPP occurs in areas
dominated by adverse environments, such as high

latitudes with short growing seasons constrained by low

temperatures, and dry areas with limited water availability.

Global mean total GPP is 109.29 Pg C/year and NPP is

56.02 Pg C/year, ignoring barren land cover as defined by

MOD12Q1. The annual QC image reflects the percent of

filled FPAR/LAI during the growing season as discussed

above.

The mean and standard deviation of GPP and NPP for

different land cover types from the three-year averaged

global 1-km data set are shown in Fig. 7, and the

corresponding mean values and the ratio of NPP to GPP

are listed in Table 1. Generally, annual GPP is about twice

of NPP.



Fig. 8. Comparison of MODIS mean annual NPP with the EMDI NPP

data set.

Fig. 7. Three-year (2001–2003) mean and standard deviation of annual

GPP, NPP for all vegetated land cover types delineated using MODIS

land cover (full name and values for different land cover types are given

in Table 1).
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4.2. Validation

Validation of global 1-km GPP/NPP product is

problematic because there are limited available field data

in comparison to global coverage data sets. Ideally, the

testing sites should cover as many as biomes types and

climate regimes as possible. Eddy flux towers offer

invaluable opportunities to validate process-based eco-

system models and satellite data because they measure

carbon, water and energy exchange on a long-term and

continuous basis (Baldocchi et al., 2001; Running et al.,

1999). GPP can be derived from eddy flux measure-

ments (Falge et al., 2002), and is being used to validate

MODIS GPP (Heinsch et al., 2005; Turner et al.,

2003b). At present, FLUXNET, a global network with

over 250 towers, is operationally providing ground

information for validating MODIS land products (http://

www.daac.ornl.gov/FLUXNET/fluxnet.html), and 8-day

MODIS GPP. Additionally, 7�7-km subsets of MODIS

land surface products for the network are provided to

researchers for validation efforts. These ongoing valida-

tion activities at surface flux site are vital for evaluation

of model performance and refinements of MOD17 such

as recalibrating BPLUT as mentioned above.
Table 1

Three-year mean GPP, NPP and the ration of NPP to GPP for different land cov

Evergreen needle

forests

Evergreen broadleaf

forests

GPP (g C/m2/year) 818 2699

NPP (g C/m2/year) 441 1224

Ratio (NPP/GPP) 0.54 0.45

Open shrublands Woody savanna

GPP (g C/m2/year) 336 1250

NPP (g C/m2/year) 212 705

Ratio (NPP/GPP) 0.63 0.56
The use of eddy covariance flux tower data allows us to

evaluate the MOD17 algorithm at the local scale, although

care must be taken to ensure that participating towers are

representative of the larger landscape surrounding them.

Participants include members of the Ameriflux and Fluxnet

communities. The towers are located across North America

from the middle latitudes to the polar region and represent

several land cover types, including forests, shrublands and

grasslands. Direct comparison of MODIS annual GPP

(MOD17A3) with observations for 37 site-years has

resulted in a higher correlation and lower bias

(r2=0.6993, relative error=19%, unpublished data) than

MODIS annual GPP calculated using tower meteorology

(r2=0.595, relative error=�2%). Overall, the average

relative error of the difference between DAO and tower

meteorology based GPP results is 27% (F45%), indicating

that the DAO meteorology plays an important role in the

accuracy of the GPP algorithm, and that this role is site-

specific. These results suggest that the MODIS GPP

compares favorably with observations, and the accuracy

of MODIS primary production is very sensitive to

meteorological inputs at the local level. A detailed

comparison of MODIS GPP and flux tower data can be

found elsewhere (Heinsch et al., 2005).

NPP is validated using the EMDI data set (Fig. 8),

which was assembled from extensive worldwide NPP data
er types across the globe

Deciduous

needle forests

Deciduous

broadleaf forests

Mixed

forests

Closed

shrublands

703 1366 1125 868

301 482 524 405

0.43 0.35 0.47 0.47

s Savannas Grasslands Croplands

1121 396 721

627 259 420

0.56 0.65 0.58

http://www.daac.ornl.gov/FLUXNET/fluxnet.html
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(Olson et al., 2001). MODIS NPP agrees well with the

EMDI data, despite the fact that this comparison contains

large uncertainties, mainly associated with the discrepancy

in land cover between MODIS and EMDI. The scatter at

high NPP corresponds mainly to tropical forests, and these

discrepancies may arise from two sources: (1) large

uncertainties in DAO data inputs, because of increased

errors from DAO data in tropical regions (Zhao et al.,

2005), and (2) larger uncertainties in the EMDI tropical

NPP data set, because field data not only are very scarce in

this region, but also contain more uncertainties due to

complex environmental characteristics in tropical forests

(Clark et al., 2001).

Using the MOD17 algorithm and a 19-year monthly

AVHRR data set, Nemani et al. (2003) found that, statisti-

cally, global terrestrial NPP is inversely related to atmos-

pheric CO2 growth rate, and both are strongly associated

with the ENSO cycle. To test this new generation of global

MODIS primary production products, we compared global

total GPP and NPP with the annual CO2 growth rate. 2001

was a La Nina year and 2002 and 2003 were weak El Nino

years (http://www.cdc.noaa.gov/ENSO/enso.mei_index.

html). Although 3-year short-term results limit our analysis,

there are some interesting findings. First, MODIS global

total GPP values (110.76 Pg C/year in 2001, 107.82 Pg C/

year in 2002 and 107.50 Pg C in 2003) are comparable with

the value of 120 Pg C derived by Ciais et al. (1997), and

NPP magnitudes (57.74 Pg C/year in 2001, 55.53 Pg C/year

in 2002 and 54.80 Pg C in 2003) are sound in comparison to

60 Pg C assuming NPP is about half of GPP (Lloyd &

Farquhar, 1996; Waring et al., 1998). Secondly, global

MODIS GPP and NPP are higher in 2001 and lower in 2002

and 2003. Correspondingly, the atmospheric CO2 growth

rate in Mauna Loa is lower (1.56 ppmv) in 2001 than in

2002 (2.04 ppmv. 2003 data are not available yet) (Keeling

& Whorf, 2003). This interannual variability in global GPP,

NPP and CO2 growth rates is largely induced by interannual

variability in global weather patterns, which is linked to the

global-scale, naturally occurring phenomenon known as the

ENSO cycle.
5. Conclusions

The C4 MOD17 algorithm has been improved in the

following aspects: spatial non-linear interpolation of DAO;

temporal filling of unreliable FPAR/LAI; employment of an

recalibrated BPLUT, which is based on recent synthesized

NPP data, and observational GPP from several eddy flux

towers; and the addition of annual GPP and meaningful QC

fields to MOD17A3. Overall, spatial interpolation improves

the accuracy of meteorological inputs for most land areas

over the globe, although it may exacerbate DAO accuracy

for limited areas by not taking into account the terrain

effects and the uncertainties within the DAO data. Temporal

linear-filling of unreliable FPAR/LAI contaminated by
cloud effectively enhances MOD15A2 inputs, and conse-

quently, significantly improves MOD17A2 and therefore

MOD17A3. The recalibrated BPLUT makes C5 MOD17

more reliable than C4 MOD17, and the addition of annual

GPP and meaningful annual QC make MOD17A3 more

convenient for the user community.

Validation campaigns are an important component of the

product, because they can evaluate the performance of the

model at different temporal and spatial scales. These

activities help us understand the strengths and weaknesses

of model and lead to refinements of the model in the future.

These validations are not limited to MOD17, because the

accuracies of the inputs have a great impact on MOD17.

These campaigns need to test important upstream inputs,

including land cover, FPAR/LAI andmeteorological inputs to

explore how uncertainties from inputs propagate to MODIS

GPP and NPP. The 3-year MODIS GPP/NPP results compare

favorably to observedGPP andNPP, and the global GPP/NPP

are comparable to the recent studies not only inmagnitude but

also in interannual variability. Large uncertainties may exist

in tropical forests due to relatively large uncertainties from

cloud contaminated FPAR/LAI, and meteorological inputs.

The improvements of upstream input products and

advances in knowledge of vegetation primary production

will enable refinement of MOD17 to continue for many

years. However, we feel these GPP and NPP data sets are

now sufficiently mature to be used in a wide variety of

applications, particularly where regular, spatially referenced

measures of vegetation activity are desired (Running et al.,

2004).
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