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Data Description: 
 
This data directory includes estimated cumulative monthly gross primary production 
(GPP), net primary production (NPP), heterotrophic respiration (Rh), and net ecosystem 
CO2 exchange (NEE) fluxes at 0.5° spatial resolution from 2000 to 2010; all carbon flux 
units are in gC/m2/month. The monthly carbon flux estimates are derived from daily 
simulations using a Terrestrial Carbon Flux (TCF) model (Kimball et al. 2009). The TCF 
model is being used to develop an operational Level 4 carbon (L4_C) product for the 
NASA Soil Moisture Active Passive (SMAP) mission. Details of the TCF/L4_C 
algorithms and implementation under SMAP are provided in the L4_C Algorithm 
Theoretical Basis Document (ATBD; Kimball et al. 2011). A brief description of the data 
in this directory is provided below. These data should be considered preliminary and 
used with caution, as the TCF/L4_C algorithms are still under development and haven’t 
been adequately validated over a global domain. 
 
The data are in a .csv ascii format provided by the NASA Carbon Monitoring System 
carbon flux group at the Jet Propulsion Laboratory, California Institute of Technology 
(Kevin Bowman PI, Joshua Fisher Co-I). The data are in a Geographic lat/lon global 
projection specified as 720 column x 291 row files. Masked areas that are outside of the 
modeling domain are specified with a -999 “no data” flag. Individual files are 
represented for GPP, NPP, Rh and NEE on a monthly basis for Years 2000 to 2010. 
Each file is approximately 2.5 MB in size, while the entire data directory is 
approximately 1.29 GB in size. Example images for each model parameter are 
presented in Figure 1.  
 
GPP is produced using a light use efficiency (LUE) model, similar to MOD17 algorithm, 
based on MERRA reanalysis daily surface meteorology inputs (including air 
temperature, VPD, and solar radiation), and MODIS NDVI (MOD13A2) inputs. The 
MODIS 1km resolution FPAR (MOD15A2) and NDVI data were first aggregated to 0.5° 
spatial resolution including ALL vegetated pixels and using biome-specific empirical 
relationships between FPAR and NDVI based on the dominant land cover type at 0.5° 
resolution; the empirical NDVI-FPAR relationships were derived for each biome type 



using regression analysis of best quality (QC) MODIS (C.5) NDVI-FPAR data. It should 
be noted that the land cover heterogeneity may introduce great uncertainty during the 
upscaling process. The MODIS GPP (MOD17A2) product was used to calibrate the 
GPP algorithm Biome Property Look-Up Table (BPLUT) at 0.5° resolution. Vegetation 
NPP is estimated as a fixed proportion of annual GPP for individual land cover (BPLUT) 
classes based on the assumption of conservatism in vegetation carbon use efficiency.  
 
Figure 1.  Example images for each monthly TCF parameter. 
 

     
 

     
 
The TCF model was spun up using MERRA surface soil temperature (≤10cm) and soil 
moisture (≤2cm), and the internal LUE algorithm based GPP/NPP products to derive Rh 
and NEE. The TCF algorithms assume dynamic steady-state conditions between NPP 
and estimated surface (≤10 cm depth) soil organic carbon (SOC) stocks, which were 
derived by spinning up the algorithms by cycling the 11 year MERRA daily surface 
meteorology and MODIS GPP records. The TCF algorithms use a hybrid soil moisture 
response and Arrhenius type exponential soil temperature response curve to estimate 
moisture and temperature constraints to Rh. The global optimum temperature for Rh 
was set as 25 °C. These parameters were not based on site calibration, but mainly 
derived from comparisons with independent global SOC inventory data. The model was 
run at 0.5° resolution and only the dominant land cover type within each coarse grid cell 
was considered.  



The BPLUT parameters for the global TCF simulations are listed below in Appendix 1. 
The land cover classification used for these simulations follows the MOD12Q1 (UMD 
type 2 land cover classification) definitions; specifically, ENF: evergreen needle-leaf 
forest, EBF: evergreen broadleaf forest; DNF: deciduous needle-leaf forest; DBF: 
deciduous broadleaf forest; MXF: mixed forest; CSB: closed shrubland; OSB: open 
shrubland; WSA: woody savanna; SVA: savanna; GRS: grassland; CRP: cropland. 

 

Algorithm Uncertainties and Assumptions 

A detailed model error budget analysis and validation of the TCF algorithms is provided 
elsewhere (Kimball et al. 2009; 2011). To date, the TCF algorithms have largely been 
developed, tested and evaluated over northern (>45°N) land areas. Global validation of 
these simulations is still preliminary so the data should be used with caution. A large 
source of uncertainty in the algorithms comes from the input MERRA surface 
meteorology; a detailed global validation of the MERRA inputs to the TCF algorithms is 
provided elsewhere (Yi et al. 2011). These results show a large warm/dry bias over the 
tropics and other uncertainties, which are imparted to the TCF simulations. Initial 
algorithm testing using AMSR-E derived soil moisture and temperature inputs across a 
latitudinal gradient of grassland, boreal forest and tundra tower sites over a 3-year 
period indicate that the model performance has a mean accuracy range similar to tower 
CO2 flux measurement based estimates and relatively detailed site level model 
simulations of these processes (i.e. NEE RMSE ≤ 30 g C m-2 yr-1 or 1.6 g C m-2 d-1). 
Larger uncertainties are expected for other climate regimes and biome types. 

The TCF model incorporates a number of simplifying assumptions consistent with global 
satellite remote sensing based algorithms, and may not sufficiently characterize all the 
major processes regulating CO2 exchange. The various model constraints, limitations 
and assumptions are documented more detail elsewhere (Kimball et al. 2000; 2011). 
The TCF framework assumes that spatial and temporal variability in the relative 
magnitude and sign of land-atmosphere CO2 exchange are largely driven by surface 
soil wetness and temperature variations through direct environmental controls on Rh. 
The model framework also assumes that surface SOC stocks are in relative equilibrium 
with these environmental conditions and GPP. This steady-state assumption produces a 
carbon neutral biosphere (long term cumulative net ecosystem-atmosphere CO2 
exchange (NEE) = 0).  Land cover and land use changes (LCLUC) from direct and 
indirect human development are not directly represented by the model and are 
expected to exert a large influence on NEE over a global domain, with less impact over 
sparsely populated northern land areas. The TCF simulations use a static global land 
cover classification and do not explicitly represent disturbance and LCLUC impacts to 



GPP; disturbance and LCLUC impacts to GPP are only partially accounted for through 
associated changes to photosynthetic canopy cover represented by the NDVI inputs.  

The potential productivity contribution and soil insulation effects of understory 
vegetation and organic ground cover to NEE are not distinguished in the model apart 
from the general land cover properties specified in the BPLUT. The Nitrogen (N) content 
of leaf litter and associated impacts to soil heterotrophic respiration (Rh) and NEE are 
also not distinguished in the model apart from general land cover properties specified in 
the BPLUT.  

The model results are based on simulations using surface (≤5cm depth) soil 
temperature inputs from the MERRA reanalysis to define the soil heterotrophic 
respiration (Rh) response to soil temperature. The algorithm is based on the assumption 
that the bulk of Rh is derived from surface soil layers. This assumption generally holds 
for most ecosystems, including boreal-arctic biomes, because the bulk of annual litter 
decomposition is composed of relatively recent (i.e. <5 years old) leaf litter that is more 
labile than older soil litter layers with higher lignin concentrations. However, in boreal 
regions, deeper soil layers can contribute up to 40% or more of total Rh, especially later 
in the growing season as the seasonal warming of deeper layers progresses and lags 
behind shallower soil layers. The contribution of deeper SOC layers to Rh may also 
increase over longer (decadal) time periods in boreal-Arctic regions due to the large 
reservoir of SOC stored in these colder soils and potential warming and destabilization 
of permafrost and deeper SOC layers under global warming.  

Sub-grid scale land cover heterogeneity is a major source of potential TCF algorithm 
uncertainty, where landscape variability in land cover conditions and NEE may not be 
adequately represented by the baseline 25-km grid cell resolution (and scaled to 0.5 
degree resolution for the current database) of the TCF simulations. Additional algorithm 
uncertainty is contributed by similar coarse scale (0.5 degree resolution MERRA) daily 
surface meteorology inputs, which may not adequately represent sub-grid scale terrain 
variability and associated meteorological effects.   
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Appendix 1:  The BPLUT parameters for this product. 

UMD_VEG   ENF    EBF    DNF   DBF   MXF  CSB   OSB   WSA   SVA   GRS   CRP 

************************    FPAR model parameters  ************************************** 

model_code  0 0 0 0 0 1 1 0 0 1 0 

scale_coeff       0.83     0.85      0.83     0.85      0.84      0.22      0.16      0.84      0.86      0.18      0.89 

offset_coeff      0.084   -0.01     0.084    -0.01    0.037    -0.16    -0.057   -0.018   -0.004  -0.089  -0.052 

********************************* GPP algorithm parameters ********************************* 

LUEmax  0.0011   0.0012  0.0011   0.0012   0.0011   0.001   0.00085   0.00111  0.0011   0.00085  0.0011 

Tmin_min(°C)      -8    -8 -8 -6 -7 -8 -8 -8 -8 -8 -8 

Tmin_max(°C)   8.31   9.09     10.44 9.94 9.5 8.61 8.8 11.39 11.39 12.02 12.02 

VPD_min(Pa)    500      1800      500 500 500 500 500 434 300 752 500 

VPD_max(Pa)   4000    4000    4160    4160      2732 6000 4455 5000 3913 5500 5071 
      

************************************* TCF parameters *************************************************************** 

CMfract     0.49     0.71    0.67  0.67 0.59 0.62 0.62 0.72 0.72 0.76 0.78 

CUE      0.55     0.45    0.55  0.55  0.5 0.6 0.6 0.5 0.55 0.6 0.55 

****************************************************************************************************  

  

 

 


