
Wherever one stands on these specific issues, such skep-
ticism seems increasingly common, and increasingly inde-
pendent of ideological position. Science is facing a ques-
tion: Does the tone of these sorts of attacks reflect a collapse
of trust in the scientific enterprise and in its social and in-
stitutional role?

Scientific leaders have long portrayed their enterprise as
a self-regulating community bound to a higher ethical com-
mitment to truth-telling than society as a whole. Yet the
tone and intractability of controversies ranging from badg-
ers to bees to fracking suggests that society may be less will-
ing to accept such claims than in the past.

Perhaps with good reason. The October 19, 2013, cover ar-
ticle of The Economist, a nonspecialist periodical with a cen-
trist, proscience political stance, asserts: “Scientists like to
think of science as self-correcting. To an alarming degree, it
is not.” It goes on to recommend that “checklists . . . should
be adopted widely, to help guard against the most common
research errors. Budding scientists must be taught technical
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When All Models 
Are Wrong

More stringent quality criteria are needed for models used at the 
science/policy interface, and here is a checklist to aid in the 

responsible development and use of models.

WINTER 2014 79

eware the rise of the government scientists
turned lobbyists,” trumpeted the headline
on an article by British journalist George
Mombiot in the left-leaning newspaper
The Guardian, adding that “From badgers
to bees, government science advisers are
routinely misleading us to support

the politicians’ agendas.” The article, published on April 29,
2013, criticized the current chief scientist at the UK’s envi-
ronment department for his assessment of the desirability of
culling badgers, and the British government’s new chief sci-
entist for his opposition to the European ban on the pesti-
cides blamed for killing bees and other pollinators.

From the other side of the ocean and the political spec-
trum, Rep. Chris Stewart (R-UT) asked (rhetorically) dur-
ing a U.S. congressional hearing in July 2013 whether the
federal Environmental Protection Agency’s study of shale-
gas fracking “is a genuine, fact-finding, scientific exercise, or
a witch-hunt to find a pretext to regulate.”
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skills, including statistics, and must be imbued with skepti-
cism towards their own results and those of others.”

The scientific enterprise seems only slowly to be awak-
ening to this problem and its dangers. In 2011, Science mag-
azine published a special series of articles on reproducibil-
ity problems in several disciplines, while its counterpart
Nature published an article by a pharmaceutical industry ex-
ecutive suggesting rules to spot suspect work in preclini-
cal cancer papers published in top-tier journals. The jour-
nal Organic Syntheses accepts only papers whose syntheses
can be reproduced by a member of the journal’s editorial
board, and Science Exchange, a commercial online portal,
has launched a Reproducibility Initiative that matches sci-
entists with experimental service providers. Meanwhile,
the number of retractions of published scientific work con-
tinues to rise.

Against this background of declining trust and increas-
ing problems with the reliability of scientific knowledge in
the public sphere, the dangers for science become most ev-
ident when models—abstracts of more complex real-world
problems, generally rendered in mathematical terms—are
used as policy tools. Evidence of poor modeling practice
and of negative consequences for society abounds. Best-
selling books by Nassim Taleb and Joseph Stiglitz have doc-
umented for public consumption the contributions of mod-
els to recent financial disasters; just two examples of what
seems to be a proliferation of books, reports, and papers
that lambast the role of economists and mathematicians in
pricing a class of derivatives at the heart of the subprime
mortgage crisis. Even the Queen of England got into the
act, questioning the London School of Economics’ econo-
mists on why they did not see the crisis coming.

The situation is equally serious in the field of environ-
mental regulatory science. Orrin Pilkey and Linda Pilkey-
Jarvis, in a stimulating small volume titled Useless Arith-
metic: Why Environmental Scientists Can’t Predict the Fu-
ture, offer a particularly accessible series of horror stories
about model misuse and consequent policy failure. They
suggest, for example, that the global change modeling com-
munity should publicly recognize that the effort to quan-
tify the future at a scale that would be useful for policy is
an academic exercise. They call modeling counterproductive
in that it offers the illusion of accurate predictions about
climate and sea level decades and even centuries in the fu-
ture. Pilkey and Pilkey-Jarvis argue that given the huge time
scales, decisionmakers (and society) would be much better
off without such predictions, because the accuracy and value
of the predictions themselves end up being at the center of
policy debates, and distract from the need and capacity to

deal with the problem despite ongoing uncertainties.

Wrong but useful 
In this light, we wish to revisit statistician George E. P. Box’s
1987 observation that “all models are wrong but some are
useful.” We want to propose a key implication of Box’s apho-
rism for science policy: that stringent criteria of transparency
must be adopted when models are used as a basis for policy
assessments. Failure to open up the black box of modeling
is likely to lead only to greater erosion of the credibility and
legitimacy of science as a tool for improved policymaking.
In this effort, we will follow The Economist’s recommenda-
tions and provide a checklist, in the form of specific rules for
achieving this transparency.

The specialized literature now makes clear that the more
one understands climate, the more model predictions of spe-
cific climate futures become uncertain: The Intergovernmen-
tal Panel on Climate Change produces larger, as opposed to
smaller, prediction uncertainty ranges as more and more
processes, scenarios, and models are incorporated and cascad-
ing uncertainties make their effect felt in the final estimates.

Climate dynamics are complex and climate science is
hard, so it would be a mistake to expect otherwise. Still, the
discourse on climate is populated by crisp numbers based on
mathematical modeling. An example is the often-mentioned
50% probability that global temperature would not increase
more than 2° Celsius (a climate policy target) if humankind
succeeds in keeping the greenhouse gas concentration at or
below 450 parts per million of carbon dioxide equivalent,
which is a measure for describing how much global warm-
ing a given type and amount of greenhouse gas may cause.
These model-generated numbers are of course nowhere near
as crisp as they appear, and even a standard sensitivity analy-
sis would reveal huge uncertainty bounds once the uncertain-
ties associated with each input assumption were propagated
through the models. Many small uncertainties multiplied
together yield huge aggregate uncertainties.

The challenge becomes even more daunting when mod-
elers turn their attention to the economic consequences of
changes in atmospheric composition. For example, the well-
regarded Review on the Economics of Climate Change, con-
ducted by a team led by British economist Nicholas Stern,
quantifies the economic impact of climate change through a
cost/benefit analysis that computes fractional losses in gross
domestic product 200 years from now. Such an effort is so re-
mote from current predictive capacity as to verge on the ir-
responsible. What are the uncertainties associated with these
predictions? No one has any idea. In this way, the legitimacy
of useful tools such as cost/benefit analysis is undermined.
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Overreliance on model-generated crisp numbers and tar-
gets recently hit the headlines again in the relation to the
90% ratio of public debt to gross domestic product stipu-
lated by Harvard professors Kenneth Rogoff and Carmen
Reinhart. Debt ratios above the threshold were considered
by these authors as unsafe for a country, but a later reanaly-
sis by researchers from the University of Massachusetts at
Amherst disproved this finding by tracing it to a coding er-
ror in the authors’ original work. This particular instance
of error became subject to self-correction, but most aspects
of most models will not be subject to such close scrutiny.
Critically, the error was corrected too late and much of the
damage could not be undone, as the original model results
kept austerity-minded economists trading blows with their
antiausterity counterparts on the merits and demerits of
balanced budgets and austerity policies, a battle that dom-
inated the financial press for months, was in no way defused
by the repudiation of the Rogoff-Reihnart results.

Concerns about the usefulness or relevance of modeling
are no longer confined to the scientific literature or to expert
blogs (such as www.allmodelsarewrong or www.wattsup
withthat.com) but have become part of the public discourse.
The beliefs of the public and policymakers about what should
be done on climate (or on the economy, or on many other
less currently resonant issues) are relying on what models are
forecasting about the future, with little if any sensitivity to
the limits on what the models are actually capable of fore-
casting with any accuracy.

Vigilance aided by rules
Enhanced vigilance is hence needed in drawing model-based
inferences for policy. To this end, we propose seven rules
that together add up to a checklist for the responsible de-
velopment and use of models. The checklist covers the en-
tire modeling process, and it draws on methods and strate-
gies from two formal processes for assessing uncertainty,
one called global sensitivity analysis and the other com-
monly known by the acronym NUSAP. Methods for apply-
ing our rules are taught to European Commission (EC) staff

members in charge of carrying out impact assessments to
gauge expected costs and benefits of policy initiatives in
preparing  EC proposals.

Global sensitivity analysis assesses the relative impor-
tance of input factors in terms of the impact of their uncer-
tainty on the model output. For example, suppose an eco-
nomic analysis of policies aimed at job creation included a
number of different uncertain elements, such as discount
factors, sector-specific policy compliance rates, elasticity
factors, and so on. These make their cumulative effect felt in
the uncertainty of the expected outcome of the policy; that
is, the increase in the number of jobs. Global sensitivity
analysis would ask: Which of those uncertainties has the
largest impact on the result? A typical response could be: If
one could reduce (for example) the uncertainty around the
discount factor, then the uncertainty in the number of new
jobs would decrease the most. Discussion then focuses on the
appropriate topic—What assumptions about the discount
rate are being made? How do practitioners agree or disagree
about these factors?—rather than on prematurely injecting
the model result itself (a prediction about job creation) into
the center of the policy discussion.

NUSAP collectively integrates five qualifiers represented
in its name. These are numeral (the numerical value of the
claimed quantity), unit (of the numeral), spread (a meas-
ure of statistical or measurement error), assessment (of the
reliability of the claim made by experts), and pedigree (an as-
sessment of the overall quality of the method itself: model-
ing, data acquisition, expert elicitation, and so on). Assess-
ment and pedigree in particular reveal how (and by whom)
the information was produced and document the con-
tentiousness of any claims. The NUSAP approach has been
adopted in the Netherlands as part of the Netherlands En-
vironmental Assessment Agency’s Guidance on Uncertainty
Assessment and Communication.

Our seven-rule checklist amounts to a process that we
call “sensitivity auditing.” “Sensitivity,” as noted, refers to
the effort to understand the different sources of uncertainty
and their relative importance. “Auditing” emphasizes the
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A common indicator of  pseudoscience is spurious precision, 
for example, when a result is given with a number of digits 
exceeding (at times ludicrously) any plausible estimate of the 
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idea of accountability to a broader audience (in this case,
policymakers and the public) and thus demands that the
model must be accessible and transparent and that expert-
ise is not narrowly defined to exclude everyone but those
who created the model. Sensitivity auditing does not aim
to improve the model; rather, like a tax audit, it comes at
the end of the process, at the point when the model becomes
a tool for policy assessment, when all possible model calibra-
tion, optimization, data assimilation, and the like have been
carried out by the developers using the tools of their craft.
And as with tax audits, sensitivity audits aim to help keep
those who run the numbers honest.

Rule 1: Use models to clarify, not to obscure. Who owns
the model? What are the owner’s interests? Is the model pro-
portionate to the task? Is it used to elucidate or to obfuscate?

Today there is little doubt about the links between the
2008 credit crunch and the mathematical models used to
price the financial products at the heart of the crisis. As
Joseph Stiglitz noted in his book Freefall: “[P]art of the agenda
of computer models was to maximize the fraction of, say, a
lousy sub-prime mortgage that could get an AAA rating,
then an AA rating, and so forth . . .” That is, the models were
used not to provide insight into the risks of the subprime
mortgage industry, but rather to conceal and propagate those
risks. Applying rule 1 would have made it clear that preda-
tory lending and irresponsible risk-taking were concealed
and sanitized by the mathematics used to price the financial
products by those who would make a profit from them.

Another example of obfuscatory use of mathematical
modeling is the Total System Performance Assessment model
used for evaluating the safety of nuclear waste disposal,
which according to Pilkey and Pilkey-Jarvis includes 286
interacting submodules, thus making it inherently incom-
prehensible even to experts. Models should illuminate com-
plexity, not create it.

Rule 1 prescribes that questions must be raised about
who benefits from the model and what motivations and in-
centives animate model developers. Further, models must
be open to and available for skeptical assessment by prospec-

tive sensitivity auditors. If the models are too complex to
be assessed by well-informed nonexperts, then there is no
way to know what biases they may contain or how plausible
their results might be.

Rule 2: Adopt an “assumption hunting” attitude. What
are the (possibly tacit) assumptions underlying the analy-
sis? What coefficients or parameters had to be given a nu-
merical value in order to make the model work? What was
considered irrelevant?

Models are full of implicit assumptions. These may have
been made early in the model construction history and
henceforth taken for granted within the community of the
developers, meaning that they are unlikely to be recognized
by the community of the model’s users. Sensitivity auditors
must go assumption hunting as a necessary step for model
appraisal, for example, by applying the NUSAP methodol-
ogy. John Kay, a prominent British economist, makes the
point vividly by exposing the “making up” of the missing
data that is needed to operate policy-related models: “To
use Britain’s Department of Transport scheme for assessing
projects, you have to impute values of time in 13 different ac-
tivities, not just today, but in 2053. Fortunately, you can
download answers to these questions from the official web-
site. And answers to many others you probably did not know
you wanted to ask. What will be average car occupancy rates,
differentiated by time of day, in 2035?”

Detailed case studies of modeling activity in policy-
 relevant problems as diverse as climate change, nuclear waste
disposal, and beach-erosion assessment show that many
model assumptions are themselves the result of a negotiation
process among scientists with different perspectives on the
problem; that is, the assumptions are value-laden. This is
probably unavoidable, but it does not have to be rendered in-
visible by model complexity.

What are the implications of “discovering” implicit as-
sumptions? One possible outcome is that stakeholders in
regulatory science debates may judge a model’s assumptions
to be either implausible or contentious. This may well sim-
ply add to existing debates, but the standard response to
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disagreement—do more modeling (with more embedded
assumptions)—is not going to resolve these debates any-
way. New processes for model development and use are re-
quired, in which engaged stakeholders work with disciplinary
experts to develop new models that can be used to test var-
ious policy options. For example, S. N. Lane of Durham
University and coauthors described in a 2010 article in the
Transactions of the Institute of British Geographers a “copro-
duction of knowledge model,” in which a team of experts
and laypeople joined together to investigate the problem of
how to deal with recurrent flooding. The collaborative work
led the team to discard off-the-shelf hydrogeological mod-
els and to co-produce a new model that led to hitherto un-
thought-of options for reducing flood risks.

The White House Office of Management and Budget, in
its Guidelines for Ensuring and Maximizing the Quality, Ob-
jectivity, Utility, and Integrity of Information Disseminated
by Federal Agencies, requires that models used to guide reg-
ulatory decisions be made available to a third party to enable
assessment of the impact of changing the input assumptions
or parameters on the model-based conclusion. This ap-
proach would give any stakeholder the possibility of obtain-
ing a different conclusion by just changing the input. Of
course, the guidelines have the potential downside of allow-
ing sensitivity audits to be used as a pretext to obstruct the
regulatory process. Yet the best approach to combating ob-
structionism is not to protect models from scrutiny, but to
ensure that models are developed and used in an appropri-
ate and open manner to begin with, as our rules stipulate.

Rule 3: Detect pseudoscience. Check that uncertainty
has not been over- or underestimated to yield a result that
advances the model proponents’ preferences.

For sensitivity auditing, we are defining pseudoscience
as the practice of ignoring or hiding the uncertainties in
model inputs in order to ensure that model outputs can be
linked to preferred policy choices. A common indicator of
this kind of pseudoscience is spurious precision, for exam-
ple, when a result is given with a number of digits exceed-
ing (at times ludicrously) any plausible estimate of the asso-
ciated accuracy. As the great mathematician C. F. Gauss
noted, “lack of mathematical culture is revealed nowhere
so conspicuously as in meaningless precision in numerical
computations.” The problem is nicely illustrated by the story
of the museum guard who tells a group of visitors that the
fossil they are viewing is “60 million and 9 years old.” He
can be this precise because, when he began working at the
museum nine years before, he was informed that the fossil
was 60 million years old.

The tendency toward overprecision is not limited to jokes.

The Review on the Economics of Climate Change, for exam-
ple, declares that “By 2100, in South Asia and sub-Saharan
Africa, up to 145-220 million additional people could fall
below the $2-a-day poverty line, and every year an addi-
tional 165,000-250,000 children could die compared with
a world without climate change.” But how can one reason-
ably believe that over such a time scale, a set of models can
predict the number of people living in poverty, or the death
rates of children, with a precision of roughly 20%, given that
these variables are influenced by so many independent fac-
tors and that long-term regional impacts of climate change
are unpredictable? This is what Nassim Taleb calls the delu-
sion of uncertainty.

Rule 4: Find sensitive assumptions before they find you.
Do not publish your inferences without having done a care-
ful sensitivity auditing.

One of the 10 commandments of applied econometrics
according to a popular handbook by the late Peter Kennedy
is: “Thou shall confess in the presence of sensitivity. Corol-
lary: Thou shall anticipate criticism.” The reason is that once
an unacknowledged assumption is publicly exposed, the en-
tire model is effectively falsified for public purposes, even if
it has valuable insights to impart.

We turn again to the Review on the Economics of Climate
Change for an example. Here, the sensitivity analysis was
performed only after economist William Nordhaus pub-
lished a critique of the implausible discount factors used
in the original models. When after-the-fact sensitivity analy-
sis reveals problematic or arguable assumptions, a stake-
holder might reasonably then ask: What were the motives
behind the use of such implausible assumptions? Such ques-
tions can badly damage the credibility of an otherwise use-
ful modeling exercise. Of course, economists and other sci-
entists studying complex systems have the right to use
model-based narratives. But when these narratives feed
into the policy process, the standard of quality for models
must be high, lest model use falls into disrepute and stake-
holders reject the use of models altogether, as has happened
in the arenas of toxic chemical regulations and food and
nutrition policy.

Any model-based inference that is introduced into the
policy environment unaccompanied by a technically sound
sensitivity analysis should be regarded as suspicious. In the
absence of a prior sensitivity analysis, model developers and
proponents of the inference are accountable for explaining
why it was dispensable.

Rule 5: Aim for transparency. Stakeholders should be
able to make sense of and, if possible, replicate the results of
the analysis.
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Lack of transparency of procedures in science is another
source of legitimate public distrust, well displayed in the re-
cent “Climategate” row, where emails among climate scien-
tists (mischievously exposed by critics of climate science)
revealed scientists discussing the “craft-skill” assumptions
and shortcuts they used to help manage the huge complex-
ities involved in climate modeling, and the tactics they used
to keep their critics at bay. Of course, this is a problem only
because scientists encourage their enterprise to be portrayed
as an overidealized Elysium of objectivity and personal rec-
titude, rather than as a human and social endeavor. The er-
ror was compounded when scientists who had sent the
emails refused to provide further access to their data be-
cause they were not legally required to do so. The UK Royal
Society formed a working party that issued a strong criti-
cism in a June 2012 report titled Science as an Open Enter-
prise, which said that the use of the UK Freedom of Infor-
mation Act to justify blocking access to the data “reflects a
failure to observe what this report regards as . . . a crucial
tenet for science, that of openness in providing data on which
published claims are based.”

A corollary of the transparency rule is that simple or par-
simonious model representations are better than more “so-
phisticated” or complex models, when they are being used
for policy impact assessments. Simpler models enable scien-
tists and stakeholders alike to understand how assumptions
and outputs are linked. Complex and often overparameter-
ized mechanistic models should be used only for more spec-
ulative investigations outside of the policy realm.

Transparency also demands comprehensibility. A good
sensitivity analysis should be understandable by those with
a stake in the results and communicated in plain English,
with minimal jargon. As an example of what to avoid: “If we
could get rid of the uncertainty in the ingestion rate, then
the overall uncertainty of the predicted health effect (the
“variance,” in statistical parlance) would be reduced by 40%.”

Rule 6: Don’t just “Do the sums right,” but “Do the right
sums.” When relevant stakeholder viewpoints are neglected,
modelers may focus on or address the wrong uncertainties.

In an impact assessment study, a type-one error is a false
positive: A practice is determined to be unsafe when it is
safe, or an intervention nonbeneficial when it is beneficial.
A type-two error is the reverse: a false negative. A type-three
error, in contrast, is one where the analysis itself is framed
incorrectly and thus the problem is mischaracterized.

In modeling, as in everyday life, type-three errors are the
most dangerous because they can leave the real problem
unaddressed, waste resources, and impede learning.

When performing an uncertainty and sensitivity analy-

sis, one may easily fall into what we can call “lamp-post-
ing,” whereby the uncertainties or parameters that are more
carefully scrutinized are those that are the least relevant but
easiest to analyze. (The term refers to Mullah Nasruddin’s
story about the drunkard looking for his lost keys not where
he lost them but under a street lamp because that is where
it was light enough to look.)

Type-three errors may arise when modelers worry about
the elegance of their models but fail to appreciate the way in
which stakeholders may understand the problem and its con-
text. For example, in the flood modeling case mentioned un-
der rule 2, years of modeling stream flow and cost/benefit
ratios for flood protection structures had failed to consider an
alternative intervention—upstream storage of flood waters—
until local stakeholders were brought into the modeling
process. One specific reason for this neglect is worth highlight-
ing. According to Lane and colleagues, upstream storage was
neglected in the models because of the “use of a pit-filling
algorithm that made sure that all water flows downhill”!

Rule 7: Focus the analysis. Do not do perfunctory sen-
sitivity analyses, merely changing one factor at a time.

Sensitivity is often omitted in modeling studies, or it is
executed in a perfunctory fashion. Many sensitivity analy-
ses seen in the literature are run without a statistical design,
moving just one input factor at a time away from a pre-es-
tablished baseline and always using that baseline as start-
ing point. But this move just scratches the model’s uncer-
tainty; for example, in a system with 10 uncertain factors,
moving just one at a time risks exploring only a tiny part of
the total potential input uncertainty.

A baseline is customarily selected so that all uncertain
factors have their “best” or reference value; hence, the reluc-
tance of modelers to depart too severely from it. Different
studies will have different input variables and different base-
line values, for example, for a discount rate, for the perme-
ability of a geological formation, or for the maximum sustain-
able level at which a crop can be harvested. These baselines,
in turn, may be the average of a set of measurements, the
opinion of one or more experts, or a number generated by an-
other model. That is, the choice of a baseline is itself an as-
sumption-laden process and thus itself subject to criticism and
sensitivity analysis. Perhaps the discount rate is too sensi-
tive, or not sensitive enough, to the needs of future genera-
tions; or the rock permeability too high (or low) because the
existence of faults has been neglected (or overplayed); or the
role of pest infestations (or innovation to reduce infestations)
in agricultural practice has been neglected.

A credible sensitivity audit must not be anchored to base-
lines that are themselves subjective; they must evaluate the
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effect of any input while all other inputs are allowed to vary
as well.

Improving society’s choices
The checklist we offer should aid developers and users of
mathematical models as they pursue applications ranging
from engineering projects to environmental regulation to
economic performance. The rules become cogent at the mo-
ment when the model is used to inform policy; for example,
in the context of an impact assessment study. The rules can-
not by themselves ensure that the model will be a reasonable
and relevant representation of the situation being modeled.
But if they have not been followed, people with an interest
in the results of the model have good reason to be skeptical
of both the motives of the modelers and the plausibility of
model outputs.

Our view is that current modeling practices, in their de-
velopment and use, are a significant threat to the legitimacy
and the utility of science in contested policy environments.
The commitment to transparency and parsimony that the
rules demand will encourage modelers themselves to focus
on parameters, inputs, assumptions, and relationships that
are well constrained and understood. Further, the assump-
tion-laden aspects of the system should be clearly spelled
out. The result will be greater credibility for models and
greater clarity about what aspects of difficult policy choices
can appropriately be constrained by modeling, and what as-
pects need to be turned over to democratic political institu-
tions. It is these institutions, after all, to which society appro-
priately assigns the task of making decisions in the face of ir-
resolvable uncertainties; and it is the process of open debate
about such decisions, not technical arguments about mod-
els, that can make clear the links between political interests
and policy preferences.
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