Climate Change of the Past 2000 Years

Dr. Faith Ann Heinsch Missoula Fire Sciences Lab U.S. Forest Service

September 22, 2010

POREST SERVICE ULS BULLS WITMENT OF AGRICUT

Image Credit: Saxon Holbrook

1911: Milutin Milankovitch proposes:

- All 3 cycles (23, 41, & 100 KYA) together control ice ages
- Summer insolation is driver

Credit: Anna Klene, U. of Montana

Time scales for Proxy Data

Anthropocene

- Term used for climate where humans are the dominate controlling mechanism...
 - Concept first proposed in 1979 by Sagan
 - Phrase coined by Crutzen in 2000
 - Nobel prize winning chemist for his work on ozone depletion
 - No precise start date.
 - May be considered to start in late 18th century
 - "Start" of Industrial Revolution
 - Ruddiman proposes it started much earlier...8,000 years ago

Last 2000 years....

- Greenland Ice Cores:
 - High resolution record of temps near Europe...

Comparison of Northern Hemisphere Temperature Reconstructions

Year A.D

Mann et al. 2008

SYR - FIGURE 2-3

IPCC

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

IPCC 2007

Last 2000 years....

Image Credit: Robert A. Rohde, Global Warming Art

Where do they come from?

Medieval Warm Period (~800-1300) (a.k.a. Medieval Climate Optimum a.k.a. Medieval Climatic Anomaly)

Medieval Warm Period (~800-1300)

Image Credit: Robert A. Rohde, Global Warming Art

Medieval Warm Period (~800-1300)

- Scattered evidence exists in Europe and the high latitudes surrounding the North Atlantic.
 - Cultivation of Greenland & Iceland
 - Grapes in England?
 - Medieval temperatures were probably 1-2°C above early 20th century levels at various European locations
 - Evidence in Japan, Alaska
 - Regional in nature
 - There were both warmer and colder areas
- Drought was evident in western U.S. (Anasazi), Central America (Mayan) & Africa

Medieval Warm Period (~800-1300)

"Evidence is not sufficient to support a conclusion that hemispheric mean temperatures were as warm, or the extent of warm regions as expansive, as those in the 20th century as a whole, during any period in medieval times." (IPCC 2007)

The Little Ice Age (1400-1900)

The Little Ice Age (1400-1900)

Image Credit: Robert A. Rohde, Global Warming Art

Little Ice Age (1400-1900)

- A modest cooling of the Northern Hemisphere of less than 1°C
 - Glaciers grew in Europe (1000 m lower than in 1850s)
 - Sea ice expansion
- Three minima, each separated by slight warming intervals beginning
 - About 1650
 - About 1770
 - About 1850

 Initially believed to be a global phenomenon; now less clear

Little Ice Age (1400-1900)

- Colder winters & shorter growing season meant crop failure and localized famine in northern regions of Europe
 - Great Famine of 1315-1317 (full recovery in 1322)
 - By the 1700s, cultivated land (MWP) in Iceland was covered by ice
- Settlements in Greenland were abandoned
 - Marginal climate?
 - Conflicts with native peoples?
- Large-scale advances of glaciers
- Not a "true" ice age since major ice sheets did not form

Transition from MWP to LIA OR Proposed causes of climate change from 1000-1850

- Orbital forcing
 - Decreasing summer insolation (tilt and precession cycles)
 - Only explains about half the amount observed in reconstruction for northern hemisphere (0.1°C)
- Millennial bipolar seesaw
 - Antarctica warm when Greenland is cold
 - Typical of large glacial-age oscillation
 - Insufficient proxy data in southern hemisphere to test

If the sun were the <u>primary</u> driver of climate change, we would expect to see (1) increasing daytime temperatures and (2) increasing summer temperatures. Instead, we are seeing just the opposite.

Improved assessment:

a) no observed trend in solar irradiance since 1978 using high quality inter-calibrated data; b) spectral information c) solar magnetic flux model rather than proxy data; d) re-evaluation of variations in Sun-like stars.

Solar irradiance forcing much smaller than GHG.

Volcanic eruptions

- Sulfate aerosols
- The more frequent clusters of eruptions after 1300 could have constributed to the small cooling trend in the LIA
- Greenhouse-Gases
 - Drop in CO₂ concentration by 7-8 ppm from 100-1200 to 1600-1800
 - Solar-volcanic changes
 - Anthropogenic hypothesis
 - Reforestation of agricultural land
 - The "Black Death" (bubonic plague)
 - The American Pandemic (host of diseases)

- Recent research (Trouet et al. 2009) suggests
 - MWP is associated with persistent positive North Atlantic Oscillation
 - A clear shift to weaker NAO conditions into the LIA
 - This is one aspect of the MWP-LIA climate transition
 - Stay tuned..... Few records exist to extend the NAO record into the MWP; new records might challenge this

- Recent research (Trouet et al. 2009) suggests
 - MWP is associated with persistent positive North Atlantic Oscillation
 - A clear shift to weaker NAO conditions into the LIA
 - This is one aspect of the MWP-LIA climate transition
 - Stay tuned..... Few records exist to extend the NAO record into the MWP; new records might challenge this

- Evidence for MWP is uncertain
 - Fewer records; larger uncertainties
- Estimated cooling from 1000 years ago into the LIA is small

- Any or all of several factors could have played a causal role
- Far greater geographic coverage is needed to define the *global* climatic response
 - Notion of MWA & LIA is valid for trends across eastern Canada, Greenland, Iceland, northern Europe – what about rest of earth's surface (90-95%)?
- <u>No such ambiguity</u> exists about the large, rapid and global warming since 1850

Variations of the Earth's surface temperature for ...

SYR - FIGURE 2-3a

IPCC

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

Global Average Temperature, 1850-2009

Source: The Copenhagen Diagnosis, 2009

Preliminary values for 2009 based on data up to and including August.

Source: IPCC Climate Change 2007: The Physical Science Basis—Summary for Policymakers.

Atmospheric Fingerprints 1890-1999

Solar effect on atmospheric temperature 1890–1999 Volcanic effect on atmospheric temperature 1890–1999 Human-generated greenhouse gas effect on atmospheric temperature 1890–1999 Combined effect of human and natural forces on atmospheric temperature 1890–1999

Atmospheric temperature key

< -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1. TEMPERATURE CHANGE (*C)

Atmospheric layers are not drawn to scale; height has been exaggerated in order to show color variations as clearly as possible.

Mann & Kump, 2008

"Fingerprints"

Human and Natural Impacts on Climate, 1975-2005 Natural climate model surface temperature calculation 1979–2005

Human and natural climate model surface temperature calculation 1979–2005

Actual recorded surface temperatures 1979–2005

Mann & Kump, 2008

ARMING PATTERNS

Temperature Trends: 1880 to 2000

(Hansen et al., Journal of Geophysical Research, 2001)

Annual Temperature Anomalies in the U.S., 1901-2008

^aAnomalies are calculated with respect to the 1971-2000 mean. ^bTime series were smoothed using a nine-point binomial filter. **Data source:** NOAA, 2009

Gray interval: -2 to 2%

What about the cool temperatures from ~1945 to ~1980?

Variations of the Earth's surface temperature for...

Departures in temperature in °C (from the 1961-1990 average)

SYR - FIGURE 2-3a

IPCC

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

Global Dimming or "Long Term Trends in Solar Radiation"
What is global dimming?

- **Global dimming** is the gradual reduction in the amount of global direct *irradiance* at the Earth's surface.
 - Measurements began in the <u>1950s</u>.
 - Most data are from NH, and all taken on land
 - Data quality?
- Effect varies by location
 - Worldwide: ~4% reduction during 1960–1990

50 years of Radiation Data - Israel

Incoming Shortwave Radiation Anomalies in the annual mean

Supporting Evidence

- Worldwide decline in the "pan evaporation rate."
 - <u>Sunlight</u>, humidity, and wind are dominant factors

Where does it come from?

- Effect of global dimming is probably due *in part* to the increased presence of <u>aerosol</u> particles in the <u>atmosphere</u>.
 - Aerosol particles and other particulate pollutants absorb solar energy and reflect sunlight back into space.
 - Increased pollution, resulting in more particulates, creates clouds with a greater number of **smaller** droplets, making them more <u>reflective</u>.
- With global warming, there is a similar effect.
 - Water vapor and cloud feedback
 - Same effect as aerosols, but different cause

For more information: http://www.climate.noaa.gov/pdf/Aerosol_Factsheet_Sept_2009_FINAL.pdf

Aircraft Contrails, Jan 29 2004 MODIS

Aircraft Contrails over Europe

Effects are mostly regional

- Regions that are <u>downwind</u> from major sources of air pollution (specifically sulfur dioxide emissions) have generally cooled.
 - *may* help explain the cooling of the Eastern U.S. relative to the warming Western U.S.
 - examined effects in the Maldives
- *Extreme* regional effect
 - the Sahel

Trend Reversal – 1990-2006

- The "dimming" trend reversed
 - part of this change is due to decreases in pollution.
 - particularly over Europe
- Most <u>developed nations</u> have done <u>more</u> to reduce aerosols released into the atmosphere than to reduce CO₂ emissions.

Human and Natural Drivers of Climate Change

Radiative Forcing Components

IPCC - WGI

Effects on Climate Systems

- Climate change, to the current date, appears to have been a tug of war, really, between two manmade pollutants.
 - greenhouse gases are pulling the system towards a warmer state $(+2.6-3.0 \text{ W m}^{-2})$
 - particles from pollution that are cooling it down (-1.5 W m⁻²)
- JAMES HARMAN all the particle forcing is what we estimate, that would imply that removing that forcing would cause a global varming of more than 1°C. That's more than the war ung that we've seen already, so this is a huge factor.

Setting Records?

August 2010 Statewide Ranks

National Climatic Data Center/NESDIS/NOAA

Weather vs. Climate

© 2006

"Choosing shorts or long underwear on a particular day is about weather; the ratio of shorts to long underwear in the drawer is about climate."

Charles Wohlforth. The Whale and the Supercomputer

Setting Records?

Global Temperature Change Decade Averages

