Climate Change Solutions

Nicky Phear November 10, 2010

Climate Change

Why is climate change a problem?

What solutions address this problem?

How would you evaluate solutions?

Defining the Climate Change Problem

climate change is problem x and g (thesis) + climate change is problem l and b (antithesis) = synthesis.

Or: climate change is problem x and this is the solution to solving problem x

Dialectic approach: Climate change is a problem because it threatens human populations (thesis) + climate change is not a problem because there are too many humans and they are destroying the planet (antithesis) = synthesis?

Pragmatic approach: Climate change is a problem because it threatens human and other populations = solution.

Exam #3 Questions

(1) Elevator Talk

Explain why you think climate change is a problem, what you think should be done about it, and how you want to participate in/engage with solutions?

(2) Climate Stabilization and Wedge Solution

What target should we set and why? How many wedges will this require, and which ones do you think we should be use?

*You are welcome, and in fact encouraged, to work with others to formulate your answers.

Climate Stabilization and the Wedge Solution

A Concept and Game

This presentation is based on the "Stabilization Wedges" concept first presented in

"Stabilization Wedges: Solving the Climate Problem for the next 50 Years with Current Technologies," S. Pacala and R. Socolow, Science, August 13, 2004

and presentation available at: http://cmi.princeton.edu/wedges/

Past, Present, and Potential Future Carbon Levels in the Atmosphere

The Stabilization Triangle

Seven Ways to Reduce Carbon

Seven Ways to Reduce Carbon

http://www.youtube.com/watch?v=-wcDHZ7Z-hQ

Efficiency -Transport

Double the fuel efficiency of the world's cars

There are about 600 million cars today, with 2 billion projected for 2055

\$

Conservation - Transport

Halve the miles traveled

Efficiency - Buildings

Use best efficiency practices in all residential and commercial buildings

Efficiency - Buildings

Replacing all the world's incandescent bulbs with CFL's would provide 1/4 of one wedge

Efficiency - Electricity

Produce today's electric capacity with double today's efficiency

Average coal plant efficiency is 32% today

\$

Wind – Electricity

Install 1 million 2 MW windmills to replace coalbased electricity

A wedge worth of wind electricity will require increasing current capacity by a factor of 30

A wedge of solar electricity would mean increasing current capacity 700 times

Rooftop solar water and space heaters are good for the 1.6 billion people in the world without electricity

Biofuels

Scale up current global ethanol production by 30 times

Using current practices, one wedge requires planting an area the size of India with biofuels crops

Forest Storage

Eliminate deforestation

\$

Forest Storage

Plant new forests

\$

Soil Storage

Use conservation tillage on *all* cropland

Conservation tillage is currently practiced on less than 10% of global cropland

Nuclear Energy

Triple the world's nuclear electricity capacity by 2055

The rate of installation required for a wedge from electricity is equal to the global rate of nuclear expansion from 1975-1990

Fuel Switching

Substitute natural gas electric plants for coal-fired facilities; natural gas burns more efficiently and cleanly than coal

Combined cycle generation plants with natural gas achieve 60% efficiency

Carbon Capture & Storage

Implement CCS at

- 800 GW coal electric plants or
- 180 coal synfuels plants or
- 10 times today's capacity of hydrogen plants

There are currently three storage projects that each inject 1 million tons of CO_2 per year – by 2055 need 3500

White Roofs

White roofs reflect more sunlight and cool buildings

Take Home Messages

In order to avoid a doubling of atmospheric CO_2 , we need to rapidly deploy low-carbon energy technologies and/or enhance natural sinks

We already have an adequate portfolio of technologies to make large cuts in emissions

No one technology can do the whole job – a variety of strategies will need to be used to stay on a path that avoids a CO_2 doubling

Every "wedge" has associated impacts and costs

Climate Change Internship Opportunities Spring Semester, 2011

Partnering organizations include:

- City of Missoula Conservation Lands Management
- Ecology Project International
- The UM Office of Sustainability
- UM ASUM Sustainability Center
- Climate Ride
- Missoula City Greenhouse Gas Advisory Committee
- The Sustainable Business Council
- US Forest Service Northern Region
- Aldo Leopold Research Institute
- Woody Biomass Utilization Program
- Clear Sky Climate Solutions
- The Clark Fork Coalition