

Fuel needed to run a 100-W light bulb for one year (876 kWh , or 3153.6 MJ)

(The fuel quantities below assume 100\% conversion efficiency. As most power generation/distribution systems only achieve 30\%-35\% efficiency, the actual quantity of fuel used to power a 100 W light bulb in your home will be about three times the quantity shown.)

- 166 kg of wood
- 117 to 210 kg (257 to 462 lb) of coal
- 73.34 kg (161.6 lb) of kerosene
- $78.8 \mathrm{~m}^{3}$, of natural gas
- 58 kg of Methane
$=.006 \mathrm{~kg}(.014 \mathrm{lb})$ of uranium

Types of Coal (in order of C Content)

- Anthracite
- Carbon content (86-98\%); Heat value =15,000 BTUs/lb
- Most frequently associated with home heating
- 7.3 billion tons of reserves in the U.S.; mostly in 11 northeastern PA counties
- Bituminous
- Carbon content $=45-86 \%$; Heat value $=10,500-15,500$ BTUs/lb
- Most frequently used to generate electricity and make coke for steel industry
- Most plentiful form of coal in U.S.
- Sub-bituminous
- Carbon content $=35-45 \%$; Heat value $=8,300-13,000$ BTUs/lb
- Lower sulfur content than other types = cleaner burning
- Reserves in half-dozen Western US states and Alaska
- Lignite
- Carbon content $=25-35 \% ;$ Heat value $=4,000-8,300$ BTUs/lb
- Mainly used for electric power generation
- Sometimes called brown coal; Geologically young

TOTAL CAPACITY: ≈ 330 GIGAWATTS
Note: For further information on and maps of carbon sources and potential sequestration sites, see www.natcarb.org.

FIGURE 5-3. U.S. Coal-Fired Power Plants (2000) and Potential Sequestration Sites

Geographical Map by NERC Regions: Coal-Fired Plants (Permitted, Near Construction, and Under Construction)
 Figure 4

Global Distribution of Coal Reserves

U.S. 2002 Carbon Dioxide Emissions from Energy Consumption - 5,682* Million Metric Tons of $\mathrm{CO}_{2}{ }^{* *}$

But...

- Carbon intensity of Coal is Very High (92g CO2/MJ)
- One typical plant = 3 million tons/year CO2
- US produces 1.5 billion tons/year from coal burning power plants
- If 60% of the US CO2 from coal were captured for sequestration, it would be 20 million barrels a day

Sub-critical Coal-Fired Power Plant

Generating Efficiency

Thermal Energy in Fuel

Electricity Produced
Influenced By:

- Fuel Source
- Plant Design
- Environment

Lower efficiency = More coal burned per unit electricity produced.

Coal Types

Anthracite	$\begin{gathered} 30,000^{1}-> \\ 31,500^{2} \end{gathered}$	$2.1^{2}-12^{1}$	$72^{1}-87^{2}$	$6.9{ }^{2}-11^{1}$	$0.5^{2}-0.7^{1}$	44-875
Pittsburgh \# 8	$\begin{gathered} 30,800^{3}- \\ 31,000^{4} \end{gathered}$	$1.1{ }^{4}-5.13^{3}$	$73^{4}-74^{3}$	$7.2{ }^{3}-13^{4}$	$2.1^{3}-2.3^{4}$	45-55 ${ }^{5}$
Illinois \#6	$25,400^{3}-$ $25,600^{4}$	$8.0^{4}-13^{3}$	$60^{4}-61^{3}$	$11^{3}-14^{4}$	$3.3^{3}-4.4^{4}$	$32-39^{5}$
Chinese Coal	$\begin{aligned} & 19,300- \\ & 25,300^{6} \end{aligned}$	$3.3-23^{6}$	$48-61^{6}$	28-33 ${ }^{6}$	$0.4-3.7^{6}$	N/A
Indian Coal	$\begin{aligned} & 13,000- \\ & 21,000^{7} \end{aligned}$	$4^{7}-15^{6}$	$30-50^{8}$	$30-50^{7}$	$0.2-0.7^{7}$	$14-19^{7}$
WY Powder River Basin	$19,400^{3}-$ $19,600^{4}$	$28^{4}-30^{3}$	$48^{3}-49^{4}$	$5.3^{3}-6.3^{4}$	$0.37^{3}-0.45^{4}$	$6-17^{5}$
Texas Lignite	$\begin{aligned} & 14,500^{9}- \\ & 18,300^{10} \end{aligned}$	$30^{10}-34^{9}$	$38^{9}-44^{10}$	$9^{10}-14^{9}$	$0.6^{10}-1.5^{9}$	$14^{11}-15^{12}$
ND Lignite	$14,000^{3}-$ $17,300^{4}$	$\left.\int 32^{4}-33^{3}\right\}$	$35^{3}-45^{4}$	$6.64-16^{3}$	$0.544^{4}-1.6^{3}$	9^{12}
	Higher Heating Value (kJ/kg)	Moisture Content (\%wt)	Carbon Content (\%wt)	Ash Content (\%wt)	Sulfur Content (\%wt)	Minemouth Coal Cost (2005 \$/ton)
					The Future of Coal, MIT, 2007	

