

# Fuel needed to run a 100-W light bulb for one year (876 kWh, or 3153.6 MJ)

(The fuel quantities below assume 100% conversion efficiency. As most power generation/distribution systems only achieve 30% - 35% efficiency, the actual quantity of fuel used to power a 100 W light bulb in your home will be about three times the quantity shown.)

- 166 kg of wood
- 117 to 210 kg (257 to 462 lb) of coal
- 73.34 kg (161.6 lb) of kerosene
- 78.8m<sup>3</sup>, of natural gas
- 58 kg of Methane
- .oo6 kg (.o14 lb) of uranium

# Types of Coal (in order of C Content)

#### Anthracite

- Carbon content (86-98%); Heat value = 15,000 BTUs/lb
- Most frequently associated with home heating
- 7.3 billion tons of reserves in the U.S.; mostly in 11 northeastern PA counties

#### Bituminous

- Carbon content = 45-86%; Heat value = 10,500 15,500 BTUs/lb
- Most frequently used to generate electricity and make coke for steel industry
- Most plentiful form of coal in U.S.
- Sub-bituminous
  - Carbon content = 35-45%; Heat value = 8,300 13,000 BTUs/lb
  - Lower sulfur content than other types = cleaner burning
  - Reserves in half-dozen Western US states and Alaska
- Lignite
  - Carbon content = 25-35%; Heat value = 4,000-8,300 BTUs/lb
  - Mainly used for electric power generation
  - Sometimes called brown coal; Geologically young





FIGURE 5-3. U.S. Coal-Fired Power Plants (2000) and Potential Sequestration Sites

**Geographical Map by NERC Regions: Coal-Fired Plants** (Permitted, Near Construction, and Under Construction) Figure 4







https://eed.llnl.gov/flow/images/LLNL\_Energy\_Chart300.jpg









The Future of Coal, MIT, 2007



The Future of Coal, MIT, 2007

# **Sub-critical Coal-Fired Power Plant**



### Sub-critical Pulverized Coal System



# **Generating Efficiency**

#### Thermal Energy in Fuel Electricity Produced

Influenced By:

- Fuel Source
- Plant Design
- Environment

Lower efficiency = More coal burned per unit electricity produced.

| Coal Types               |   |                                              |   |                                     |   |                                   |   |                                    |  |                                      |   |                                      |   |
|--------------------------|---|----------------------------------------------|---|-------------------------------------|---|-----------------------------------|---|------------------------------------|--|--------------------------------------|---|--------------------------------------|---|
| Anthracite               | 2 | 30,000 <sup>1</sup> -<br>31,500 <sup>2</sup> | > | 2.1 <sup>2</sup> -12 <sup>1</sup>   | 2 | 721-872                           | 2 | 6.9 <sup>2</sup> -11 <sup>1</sup>  |  | 0.5 <sup>2</sup> -0.7 <sup>1</sup>   | 2 | 44-875                               | 2 |
| Pittsburgh # 8           |   | 30,800 <sup>3</sup> -<br>31,000 <sup>4</sup> |   | 1.1 <sup>4</sup> –5.13 <sup>3</sup> |   | 73 <sup>4</sup> -74 <sup>3</sup>  |   | 7.2 <sup>3</sup> -13 <sup>4</sup>  |  | 2.1 <sup>3</sup> -2.3 <sup>4</sup>   |   | 45–55 <sup>5</sup>                   |   |
| <b>ll</b> inois #6       |   | 25,400 <sup>3</sup><br>25,600 <sup>4</sup>   |   | 8.0 <sup>4</sup> -13 <sup>3</sup>   |   | 60 <sup>4</sup> -61 <sup>3</sup>  |   | 11 <sup>3</sup> -14 <sup>4</sup>   |  | 3.3 <sup>3</sup> -4.4 <sup>4</sup>   |   | 32–395                               |   |
| Chinese Coal             |   | 19,300–<br>25,300 <sup>6</sup>               |   | 3.3–236                             |   | 48–61°                            |   | 28-336                             |  | 0.4-3.76                             |   | N/A                                  |   |
| Indian Coal              |   | 13,000–<br>21,000 <sup>7</sup>               |   | 4 <sup>7</sup> -15 <sup>6</sup>     |   | 30-50 <sup>8</sup>                |   | 30–50 <sup>7</sup>                 |  | 0.2-0.77                             |   | 14–197                               |   |
| WY Powder<br>River Basin |   | 19,400 <sup>3</sup><br>19,600 <sup>4</sup>   |   | 28 <sup>4</sup> -30 <sup>3</sup>    |   | 48 <sup>3</sup> -49 <sup>4</sup>  |   | 5.3 <sup>3</sup> –6.3 <sup>4</sup> |  | 0.37 <sup>3</sup> –0.45 <sup>4</sup> |   | 6–17 <sup>5</sup>                    |   |
| Texas Lignite            |   | 14,500 <sup>9</sup><br>18,300 <sup>10</sup>  |   | 30 <sup>10</sup> 34 <sup>9</sup>    |   | 38 <sup>9</sup> -44 <sup>10</sup> |   | 9 <sup>10</sup> -14 <sup>9</sup>   |  | 0.6 <sup>10</sup> -1.5 <sup>9</sup>  |   | 14 <sup>11</sup> - 15 <sup>12</sup>  |   |
| ND Lignite               |   | 14,000 <sup>3</sup><br>17,300 <sup>4</sup>   |   | 324-333                             | 7 | 35 <sup>3</sup> 45 <sup>4</sup>   |   | 6.6 <sup>4</sup> -16 <sup>3</sup>  |  | 0.54 <sup>4</sup> -1.6 <sup>3</sup>  |   | 912                                  |   |
|                          |   | Higher Heating<br>Value (kJ/kg)              |   | Moisture Content<br>(%wt)           |   | Carbon Content<br>(%wt)           |   | Ash Content<br>(%wt)               |  | Sulfur Content<br>(%wt)              |   | Minemouth Coal<br>Cost (2005 \$/ton) |   |

The Future of Coal, MIT, 2007