Plant Design

	Pressure	Temperature	Efficiency
Subcritical	$\begin{aligned} & <22.0 \mathrm{Mpa} \\ & (16.5) \end{aligned}$	$\begin{aligned} & 550 \mathrm{C} \\ & (540 \mathrm{C}) \end{aligned}$	$\begin{aligned} & 33 \%-37 \% \\ & (34 \%) \end{aligned}$
Supercritical	$\begin{aligned} & >22.0 \mathrm{Mpa} \\ & (24.3) \end{aligned}$	$\begin{aligned} & >550 C \\ & (565 C) \end{aligned}$	$\begin{aligned} & 37 \%-40 \% \\ & (38 \%) \end{aligned}$
Ultra-Supercritical	Up to 32 Mpa	610C	43.30\%

Fluidized Bed Combustion

Gasification (IGCC)

The Future of Coal, MIT, 2007

Post - Combustion CO_{2} Capture

Energy Cost of CO_{2} Capture

73% of original efficiency

79% of original efficiency

IGCC Pre-Combustion CO_{2} Capture

The Future of Coal, MIT, 2007

Plant Cost

Carbon Cost at Which Capture Becomes Competitive

- Subcritical : \$41.3/ton
- Supercritical: \$40.4/ton
- Ultra-supercritical: \$41.4/ton
- Fluidized bed combustion: \$39.7/ton
- IGCC:\$19.3/ton

Spremberg, Germany

- First test plant for CCS
- 30 MW plant, cost \$7om Euros
- U.S. Average = 976 MW
- CO2 separated, condensed, transported to gas field, forced 1,000 m underground
- Larger demonstration project slated for 2015

Conclusions

- World power demands are expected to rise 60\% by 2030.
- Coal is a huge part of global energy use and is likely to remain important
- Technology exists to remove 90% of CO_{21} 99% of sulfur dioxide, 99% of particulates, and $90 \% \mathrm{No}_{\mathrm{x}}$
- Costs of implementing these technologies are large and possibly prohibitive

