An Intro to the Economics of Climate Policy

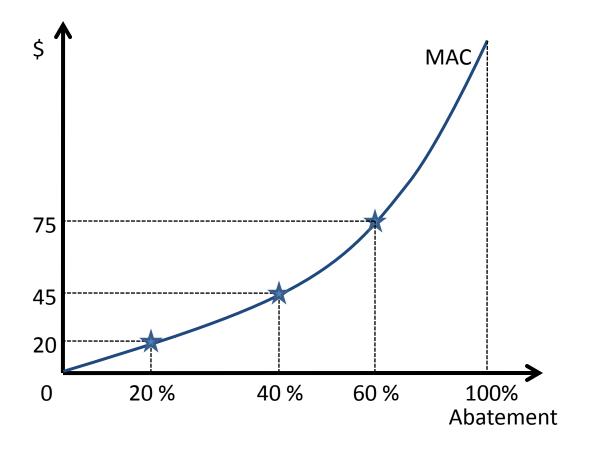
- What are we going to cover today?
 - Introduction to "cost-effective" policy solutions to CO_2 emission reductions.
 - Develop a baseline standards approach
 - Compare two popular approaches
 - Emission taxes (carbon tax)
 - Tradable emissions permits

New Course this Fall!

- ECON 445 "International Environmental Economics and Climate Change"
- Fall 2009, Tuesday & Thursday 11:10 AM 12:30 PM
- Satisfies a component of the Climate Change and Society portion of the Climate Change Studies minor.
- Topics:
 - Climate change economics
 - The economics of international trade in waste
 - Trans-boundary pollution
 - The Pollution Haven Hypothesis

An Intro to the Economics of Climate Policy

- Stern and IPCC estimates (as well as others) of the cost of climate change mitigation are approximately 1% of world GDP per year if we are to achieve a stabilization of atmospheric CO2 concentrations of 500-550 ppm.
- In 2008, world GDP was \$70.6 trillion...the U.S. GDP was \$14.6 trillion.
- This implies that the world will need to spend \$706 billion/year, and the U.S. needs to spend \$146 billion/year to achieve the 550 ppm CO₂ concentration target.
- The estimates assume that policies to abate CO₂ emissions are *cost-effective*.


Cost-Effectiveness

- A policy is cost-effective if it achieves a given amount of environmental improvement at the least possible aggregate cost.
- This occurs when a policy is designed such that the marginal cost of abatement across sources are the same (known as the equimarginal principle).

Marginal Abatement Cost

- The marginal cost of abatement is the cost of reducing one additional unit of emissions (say 1 ton of CO₂).
- The marginal abatement cost curve shows the marginal cost of reducing (abating) each unit of CO₂ emissions.

Marginal Abatement Costs

CO ₂ Emissions		Marginal Abatement Costs(\$	
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8	0	0	0
7	1	10	20
6	2	20	60
5	3	30	80
4	4	40	100
3	5	50	140
2	6	60	200
1	7	80	250
0	8	100	310

A Standards Based Approach to Emission Reduction

- Standards can be defined in many ways, but two common approaches are technology standards and emission standards.
 - Technology standards define the technology that may be used.
 - Emission standards place a limit on emissions.

CO ₂ Emissions		Marginal Abatement Costs(\$)	
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8	0	0	0
7	1	10	20
6	2	20	60
5	3	30	80
4	4	40	100
3	5	50	140
2	6	60	200
1	7	80	250
0	8	100	310

• Let's take a look at the costs of an emission standard that calls for a 50% reduction in CO_2 Emissions from all sources.

<u>CO₂ Emissions</u>		Marginal Abatement Costs(\$)	
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8 🕤	0 🔵	0 🕤	0
7 🕇	1 🚄	10	20
6 🗲	2 🚄	20 🚄	60
5 🚄	3 🚄	30 🗲	80
4 ┙	4 🌙	40 ┙	100
3	5	50	140
2	6	60	200
1	7	80	250
0	8	100	310

Source A reduces CO₂ emissions from 8 tons/wk to the set standard of 4 tons/wk.

The cost of achieving the 50% reduction for Source A is 10 + 20 + 30 + 40 = \$100.

<u>CO₂ Emissions</u>		Marginal Abatement Costs(\$)	
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8 🕤	0 🕤	0	0
7 🕇	1 🚄	10	20 🚄
6 🚄	2 🚄	20	60 🚄
5 🧲	3 🚄	30	80 <
4 🥔	4 🌙	40	100 🖌
3	5	50	140
2	6	60	200
1	7	80	250
0	8	100	310

Source B reduces CO₂ emissions from 8 tons/wk to the set standard of 4 tons/wk.

The cost of achieving the 50% reduction for Source B is 20 + 60 + 80 + 100 = \$260.

<u>CO₂ Emissions</u>		Marginal Abatement Costs(\$)	
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8 🕤	0 🔵	0	0
7 🕇	1 🚄	10	20 🚄
6 🚄	2 🚄	20	60 🚄
5 🚄	3 🚄	30	80 룾
4 🥔	4 🌙	40	100 🖌
3	5	50	140
2	6	60	200
1	7	80	250
0	8	100	310

- What is the total cost of achieving a 50% reduction in CO₂ emissions?
- \$100 + \$260 = \$360 per week
- Note that the marginal abatement costs are different for Source A and B.

A CO₂ Emission Tax (carbon tax)

- A carbon emission tax places a tax on a unit of carbon emissions... effectively placing a price on pollution.
- For example, if an emissions tax of \$50 were placed on each ton of CO₂ emissions and a power plant emitted 40 tons per month...they would have a tax bill (cost) of \$2000 per month.
- Firms and individuals seek to reduce costs to increase profit.
- The emission tax (if correctly priced) gives polluting sources an incentive to reduce emissions.
- Let's take a look...consider a \$65 emission tax in our previous example.

<u>CO₂ Emissions</u>		Marginal Abatement Costs(\$)	
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8	0	0	0
7	1	10	20
6	2	20	60
5	3	30	80
4	4	40	100
3	5	50	140
2	6	60	200
1	7	80	250
0	8	100	310
 What are <i>total costs</i> for Source A and Source B if they continue to emit 8 tons/wk? Source A = \$0 + \$65*8 = \$520 Source B = \$0 + \$65*8 = \$520 			

CO ₂ Emissions		Marginal Abatement Costs(\$)	
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8	0	0	0
7	1	10	20
6	2	20	60
5	3	30	80
4	4	40	100
3	5	50	140
2	6	60	200
1	7	80	250
0	8	100	310

 Do Source A and Source B have an incentive to reduce costs by reducing their CO₂ emissions?

<u>CO₂ Emissions</u>		Marginal Abatement Costs(\$)	
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8 5	0 🕤	0 5	0
7 🚧	1 🧖	10	20
6	2	20	60
5	3	30	80
4	4	40	100
3	5	50	140
2	6	60	200
1	7	80	250
0	8	100	310

<u>CO₂ Emissions</u>		Marginal Abat	tement Costs(\$)
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8 5	0 🕤	0 🕤	0
7 🚧	1 💆	-65 +10	20
6	2	20	60
5	3	30	80
4	4	40	100
3	5	50	140
2	6	60	200
1	7	80	250
0	8	↑ 100	310
	Potential per ton	marginal tax savings	

<u>CO₂ Emissions</u>		Marginal Abat	tement Costs(\$)
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8 🕤	0 🕤	0 5	0
7 🗲	1 🚄	- 65 +10 	20
6 🚧	2 ┙	20 🚧	60
5	3	30	80
4	4	40	100
3	5	50	140
2	6	60	200
1	7	80	250
0	8	↑ 100	310
	Potential per ton	l marginal tax savings	

<u>CO₂ Emissions</u>		Marginal Aba	tement Costs(\$)
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8 🕤	0 🕤	0 5	0
7 🗲	1 🚄	- 65 +10 	20
6 🚧	2 ┙	-65 +20	60
5	3	30	80
4	4	40	100
3	5	50	140
2	6	60	200
1	7	80	250
0	8	↑ 100	310
	Potentia per ton	l marginal tax savings	

<u>CO₂ Emissions</u>		Marginal Aba [.]	tement Costs(\$)
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8 🕤	0 🕤	0 5	0
7 🗲	1 🚄	- 65 +10 5	20
6 🗲	2 🚄	-65 +20	60
5 ┙	3 ┙	30 🛹	80
4	4	40	100
3	5	50	140
2	6	60	200
1	7	80	250
0	8	↑ 100	310
	Potentia per ton	l marginal tax savings	

<u>CO₂ Emissions</u>		Marginal Aba	tement Costs(\$)
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8 🕤	0 🕤	0 5	0
7 🗲	1 🚄	-65 +10	20
6 🗲	2 🚄	-65 +20	60
5 ┙	3 ┙	-65 +30	80
4	4	40	100
3	5	50	140
2	6	60	200
1	7	80	250
0	8	↑ 100	310
	Potentia per ton	l marginal tax savings	

<u>CO₂ Emissions</u>		Marginal Aba	tement Costs(\$)
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8 🕤	0 🕤	0 5	0
7 🗲	1 🚄	- 65 +10 5	20
6 🗲	2 🚄	-65 +20	60
5 🤾	3 🚄	-65 +30	80
4 🥔	4 🌙	40 ┙	100
3	5	50	140
2	6	60	200
1	7	80	250
0	8	↑ 100	310
	Potentia per ton	l marginal tax savings	

<u>CO₂ Emissions</u>		N	larginal Ab	atement Costs(\$)
<u>(tons/wk)</u>	Tons Abated		Source A	Source B
8 🕤	0 🕤		0 🕤	0
7 🗲	1 🚄	-65	+10	20
6 🗲	2 🚄	-65	+20	60
5 🧲	3 🔾	-65	+30	80
4 🥔	4 🌙	-65	+40 🗸	100
3	5		50	140
2	6		60	200
1	7		80	250
0	8	↑	100	310
	Potentia per ton	l marginal	tax savings	

<u>CO₂ Emissions</u>		N	larginal Ab	atement Costs(\$)
<u>(tons/wk)</u>	Tons Abated		Source A	Source B
8 🕤	0 🕤		0 🕤	0
7 🗲	1 🚄	-65	+10	20
6 🚄	2 🚄	-65	+20	60
5 🚄	3 🚄	-65	+30	80
4 🔫	4 🔾	-65	+40	100
3 🚧	5 🌙		50 🚧	140
2	6		60	200
1	7		80	250
0	8	↑	100	310
	Potentia per ton	l marginal	tax savings	

CO ₂ Emissions		Ν	larginal Ab	<pre>patement Costs(\$)</pre>
<u>(tons/wk)</u>	Tons Abated		Source A	Source B
8 🥎	0 🕤		0 🕤	0
7 🗲	1 🚄	-65	+10	20
6 🗲	2 🚄	-65	+20	60
5 🤾	3 룾	-65	+30 🚄	80
4 🔫	4 🔾	-65	+40 \prec	100
3 🚧	5 🌙	-65	+50 🚧	140
2	6		60	200
1	7		80	250
0	8	↑	100	310
	Potentia per ton	ıl marginal	tax savings	

<u>CO₂ Emissions</u>		N	larginal Ab	patement Costs(\$)
<u>(tons/wk)</u>	Tons Abated		Source A	Source B
8 🕤	0 🕤		0 为	0
7 🗲	1 🚄	-65	+10	20
6 🗲	2 🚄	-65	+20	60
5 🚄	3 🚄	-65	+30	80
4 🔫	4 🔾	-65	+40	100
3 🚧	5 🌙	-65	+50 🛩	140
2	6		60	200
1	7		80	250
0	8	$\mathbf{\Lambda}$	100	310
	Potentia per ton	l I marginal	tax savings	

CO ₂ Emissions		N	larginal Ak	<pre>patement Costs(\$)</pre>
<u>(tons/wk)</u>	Tons Abated		Source A	Source B
8 📉	0 属		0	0
7 🖌	1 🧹	-65	+10 🖌	20
6 🥏	2 💙	-65	+20 💙	60
5 为	3 5	-65	+30	80
4 5	4 5	-65	+40	100
3 🌱	5 🚄	-65	+50	140
2 🚧	6 🖊	-65	+60 🚧	200
1	7		80	250
0	8	↑	100	310
	Potentia per ton	al marginal	tax savings	

Source A reduces CO₂ emissions from 8 tons/wk to 2 tons/wk when there is a \$65/ton carbon tax.

The abatement cost of achieving the reduction for Source A is 10 + 20 + 30 + 40 +50 + 60 = \$210, and their tax bill is \$65*2 = \$130. For total costs of \$100 + \$130 = \$340.

<u>CO₂ Emissions</u>		Marginal Abatement Costs(\$)			
<u>(tons/wk)</u>	Tons Abated	Source A	Source B		
8	0	0	0		
7	1	10	20		
6	2	20	60		
5	3	30	80		
4	4	40	100		
3	5	50	140		
2	6	60	200		
1	7	80	250		
0	8	100	310		

 Does Source B have an incentive to reduce costs by reducing their CO₂ emissions?

CO ₂ Emission	<u>s</u>	Marginal Abatement Costs(\$)		
<u>(tons/wk)</u>	Tons Abated	Source A	Source B	
8 5	0 🕤	0	0 5	
7 💆	1	10	20 🚧	
6	2	20	60	
5	3	30	80	
4	4	40	100	
3	5	50	140	
2	6	60	200	
1	7	80	250	
0	8	100	310	

CO ₂ Emissions	Marginal Abatement Costs(\$)			
<u>(tons/wk)</u>	Tons Abated	Source A		Source B
8 5	0 🕤	0		0 5
7 🚧	1 🚧	10	-65	+20
6	2	20		60
5	3	30		80
4	4	40		100
3	5	50		140
2	6	60		200
1	7	80		250
0	8	100	\uparrow	310
		Potentia	l marginal ta	ax savings

per ton

<u>CO₂ Emissions</u>	Marginal Abatement Costs(\$)			
<u>(tons/wk)</u>	Tons Abated	Source A		Source B
8 5	0 🕤	0		0 5
7 🗲	1 🚄	10	-65	+20
6 🚧	2 ┙	20		60 🚧
5	3	30		80
4	4	40		100
3	5	50		140
2	6	60		200
1	7	80		250
0	8	100	\uparrow	310
		Potentia	l marginal ta	ix savings

Potential marginal tax savings per ton

<u>CO₂ Emissions</u>	Marginal Abatement Costs(\$)			
<u>(tons/wk)</u>	Tons Abated	Source A	4	Source B
8 📉	0 属	0		0 属
7 🖌	1 🧹	10	-65	+20 🖌
6 🔎	2 💙	20	-65	+60 💙
5	3	30		80
4	4	40		100
3	5	50		140
2	6	60		200
1	7	80		250
0	8	100	↑	310
		Detentio	al marginal to	w covingo

Potential marginal tax savings

per ton

Source B reduces CO₂ emissions from 8 tons/wk to 6 tons/wk when there is a \$65/ton carbon tax.

The abatement cost of achieving the reduction for Source B is 20 + 60 = \$80, and their tax bill is \$65*6 = \$390. For total costs of \$80 +\$390 = \$470.

<u>CO₂ Emissions</u>		Marginal Abatement Costs(\$)		
<u>(tons/wk)</u>	Tons Abated	Source A	Source B	
8	0	0	0	
7	1	10	20	
6	2	20	60	
5	3	30	80	
4	4	40	100	
3	5	50	140	
2	6	60	200	
1	7	80	250	
0	8	100	310	

Has a \$65/ton carbon tax lead to a 50% reduction in CO₂ emissions/wk? Yes!

Total abatement costs are 10 + 20 + 30 + 40 + 50 + 60 = \$210 from Source A and \$20 + \$60 = \$80 for Source B, for a total of \$290/wk.

That's right, we've achieved a 50% reduction in CO₂ emissions at 20% lower cost compared to the uniform standard (recall that the cost there was \$340/wk).

Implications of the Carbon Emission Tax

- *If* the emission tax is set correctly, the carbon emission tax can achieve the target reduction in a cost-effective manner.
- Sources with low abatement costs will do more of the abating and pay less in taxes. Sources with high abatement costs will do less abating but pay higher taxes.
- The emission tax creates an incentive for those that are most effective (least cost) at reducing emissions to do more of the abating.
- Reduces emissions and generates tax revenues that can be used for other things (so called "double dividend").
 - Covering regulatory budgets.
 - Subsidizing consumers.
 - Returned to firms in other ways (technology subsidies, etc.)

Tradable Emission Permits (Cap & Trade)

- Tradable Emission Permit programs create a 'market' for pollution by allocating permits that can be traded amongst polluters.
- Regulators set the CO₂ emission target and allocate (or auction) the permits to polluters.
- Suppose a polluter is allocated 8 permits (1 ton of CO₂ equivalent) per month.
- Polluter has three options:
 - 1. Pollute 8 tons of CO₂
 - 2. Pollute less than 8 tons and sell the extra permits
 - 3. Buy more permits and pollute greater than 8 tons

CO ₂ Emissions		Marginal Abatement Costs(\$)	
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8	0	0	0
7	1	10	20
6	2	20	60
5	3	30	80
4	4	40	100
3	5	50	140
2	6	60	200
1	7	80	250
0	8	100	310

CO ₂ Emissions		Marginal Abatement Costs(\$	
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8	0	0	0
7	1	10	20
6	2	20	60
5	3	30	80
4	4	40	100
3	5	50	140
2	6	60	200
1	7	80	250
0	8	100	310

- Is there a price at which Source A and Source B could agree to trade a permit and make themselves better off?
- Yes! Any price between \$40 and \$100 can make both firms better off.
- Let's say they agree to a price of \$65.

<u>CO₂ Emissions</u>		Marginal Abatement Costs(\$	
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8	0	0	0
7	1	10	20
6	2	20	60
5	3	30	80
4	4	4 0	100
3	5	5 0	140
2	6	60	200
1	7	80	250
0	8	100	310

- Source A increases abatement by 1 ton, thereby increasing abatement costs by \$50.
- But they can sell that permit they freed up for \$65...a net gain of \$15.

<u>CO₂ Emissions</u>		Marginal Abatement Costs(\$)	
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8	0	0	0
7	1	10	20
6	2	20	60
5	3	30	80 👟
4	4	4 0	100 🖊
3	5	5 0	140
2	6	60	200
1	7	80	250
0	8	100	310

- What about Source B? They purchase a permit for \$65 from Source A (so that they now hold 5 permits), which allows them to avoid \$100 of abatement costs.
- They pay \$65 for a permit and save \$100 in costs...a net gain of \$35.

CO ₂ Emissions		Marginal Abatement Costs(\$)	
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8	0	0	0
7	1	10	20
6	2	20	60 📉
5	3	30	80 🗲
4	4	4 0	100 🚽
3	5	> 50	140
2	6	60	200
1	7	80	250
0	8	100	310

- Should they trade another permit?
- Source A could frees up another permit for \$60 and sells for \$65...a net gain of \$5.
- Source B purchases a permit for \$65 and reduces costs by \$80...net gain=\$15

<u>CO₂ Emissions</u>		Marginal Abatement Costs(\$)	
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8	0	0	0
7	1	10	20
6	2	20	60 📉
5	3	30	80 🗲
4	4	4 0	100 🚽
3	5	> 50	140
2	6	60	200
1	7	80	250
0	8	100	310

- Should they trade another permit?
- No. Source A would take a loss (\$65-\$80 = -\$15) and Source B would take a loss (\$60-\$65=-\$5).
- RESULT: 2 permits are traded at \$65 apiece.

Tradable Emission Permits

- Tradable emission permits create a private property right for emissions.
- Low cost CO₂ abaters will increase abatement and sell permits for a profit.
- High cost CO₂ abaters will abate less by purchasing permits that cost less than their abatement costs.
- Result: Those sources with the low abatement costs do most of the CO2 abatement.
- Policymakers control the level of emissions through the issuance of permits!

- In the previous examples, the carbon tax and the tradable permits approach are equally effective at achieving the target goal of a 50% reduction in CO₂ emissions in a cost-effective manner.
- From a policymaker or regulator's standpoint however this requires perfect information about each sources marginal abatement cost structure.
- Let's take a look at a world where the policymakers *do not* have perfect information about the marginal abatement costs of firms (countries)...

CO ₂ Emissions		Marginal Abatement Costs(\$	
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8	0	0	0
7	1	10	20
6	2	20	60
5	3	30	80
4	4	40	100
3	5	50	140
2	6	60	200
1	7	80	250
0	8	100	310

CO ₂ Emissions		Marginal Abatement Costs(\$)	
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8	0	0	0
7	1	10	20
6	2	20	60
5	3	30	80
4	4	40	100
3	5	50	140
2	6	60	200
1	7	80	250
0	8	100	310

- With perfect information a cost effective reduction of 50% can be achieved with a \$65 carbon tax or allocating 8 permits (the market price will clear at \$65).
- As a policy maker, you are indifferent from a cost-effectiveness perspective.

<u>CO₂ Emissions</u>		Marginal Abatement Costs(\$	
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8	0	0	0
7	1	10	20
6	2	20	60
5	3	30	80
4	4	40	100
3	5	50	140
2	6	60	200
1	7	80	250
0	8	100	310

• But what if you don't know the true marginal abatement costs of the sources?

<u>CO₂ Emissions</u>		Marginal Abatement Costs(\$)	
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8	0		
7	1		
6	2		
5	3		
4	4		
3	5		
2	6		
1	7		
0	8		

- But what if you don't know the true marginal abatement costs of the sources?
- Are carbon taxes and tradable permits equally efficient in the face of uncertainty for the policymaker?

<u>CO₂ Emissions</u>		Marginal Abatement Costs(\$)	
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8	0		
7	1		
6	2		
5	3		
4	4		
3	5		
2	6		
1	7		
0	8		

• Let's begin with the carbon tax. Suppose that the policymaker made a best guess at a carbon tax of \$65.

<u>CO₂ Emissions</u>		Marginal Abatement Costs(\$	
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8	0	0	0
7	1	30	40
6	2	40	80
5	3	50	100
4	4	60	120
3	5	70	160
2	6	80	220
1	7	100	270
0	8	120	330

- Let's begin with the carbon tax. Suppose that the policymaker made a best guess at a carbon tax of \$65.
- But the true marginal abatement costs of the Sources were above.

CO ₂ Emissions		Marginal Abatement Costs(
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8	0	0	0
7	1	30 5	40 🖌
6	2	40 🗲	80
5	3	50 🗲	100
4	4	60 🖌	120
3	5	70	160
2	6	80	220
1	7	100	270
0	8	120	330

- Source A will abate 4 tons...abate as long as *MAC < tax*.
- Source B will abate 1 ton... as long as MAC < tax.
- END RESULT: We're short of the 50% reduction target (5 tons abated, rather than 8)!

<u>CO₂ Emissions</u>		Marginal Abatement Costs(\$)	
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8	0		
7	1		
6	2		
5	3		
4	4		
3	5		
2	6		
1	7		
0	8		

• Are things different with a carbon trading program?

CO ₂ Emissions		Marginal Abatement Costs(\$)	
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8	0	0	0
7	1	30	40
6	2	40	80
5	3	50	100
4	4	60	120
3	5	70	160
2	6	80	220
1	7	100	270
0	8	120	330

- Are things different with a carbon trading program?
- Suppose each firm gets allocated 4 permits. Will they trade?
- Yes. Any price between \$60 and \$120 can make them both better off.

<u>CO₂ Emissions</u>		Marginal Abatement Costs(\$)	
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8	0	0	0
7	1	30	40
6	2	40	80
5	3	50	100
4	4	60	120
3	5	70	160
2	6	> 80	220
1	7	100	270
0	8	120	330

- Suppose the market clears in the middle at \$90 per permit.
- Source A will increase abatement and sell permits to Source B as long as the permit price > MAC.
- Source A increases abatement by 2 tons, freeing up 2 permits to sell.

CO ₂ Emissions		Marginal Abatement Costs(\$)	
<u>(tons/wk)</u>	Tons Abated	Source A	Source B
8	0	0	0
7	1	30	40
6	2	40	80 🔨
5	3	50	100
4	4	6 0	120
3	5	70	160
2	6	> 80	220
1	7	100	270
0	8	120	330

- Source B will purchase permits as long as purchase price < MAC.
- Source B will decrease abatement and purchase 2 permits.
- END RESULT: 50% reduction has been achieved, but permit price is higher.

- Under the Carbon Tax, the policymaker sets the price and the quantity of abatement is determined by the market.
- Under the Tradable Permits program, the policymaker sets the quantity of abatement (by controlling how many permits they allow) and the market determines the price.

Pros for tax

- No price volatility
- Revenue allows for "double-dividend"
- Can be applied at source (fewer monitoring sites. Relevant for developing countries)

Pros for cap-&-trade

- Emissions certainty
- Can raise revenues through auctioning
- Political feasibility in countries that are "taxation-averse" (e.g. U.S.)
- Non-producing participants have a "voice" by buying and retiring permits.