To Receive Honors Credit for this class...

- You must register for FOR295-80A (CRN 74798) to get honors credit for this course.
 - Forestry students can also enroll in this section *without* being registered for Honors Credit.
- If you are *not* registered in FOR295, you can change your schedule until 4:30 p.m. on Sept. 15 using Cyberbear.

From Sept. 15 – Oct. 6, you can change the options by filling out a drop/add form. There is a \$10 charge for *each* drop and *each* add during this time (a total of \$20 to change sections!). You also need your Advisor's Signature.

OBSERVATORY, HAWAII MO NCENTRATION ML0-145 Ρ in the state of th (PPM) CONCENTRATION. WW. C02 F Ē 64 66 84 86 88 94 96 YEAR 19 - May - 05

The Earth's Energy Balance

Light is most concentrated from an overhead source

Light hitting at an angle is less concentrated

Annual Average Insolation

Arctic Circle (66.5° N) ----Tropic of Cancer (23.5° N) ----Equator ----

Orbit

Tropic of Capricorn (23.5° S) -

Vernal Equinox March 21–22 Incoming solar energy equal in both hemispheres

Summer Solstice June 21–22 Incoming solar energy greatest in Northern Hemisphere Sun

Earth

Autumnal in S Equinox Hen September 22–23 Incoming solar energy equal in both hemispheres

Winter Solstice December 21–22 Incoming solar energy greatest in Southern Hemisphere

231/2°

Wien's Law

 $\lambda_{\rm m}$ (µm) = 2897 / T

 $\lambda_m \equiv$ wavelength of maximum intensity; the higher the temperature, the shorter the wavelength & the more intense the light

Wilhelm Wien (1864-1928)

Solar Radiation Spectrum

Important Radiation Laws & Concepts

$\mathbf{E} = \mathbf{\sigma} \times \mathbf{T}^4$

Jožef Stefan (1835-1893)

Ludwig Boltzmann (1844-1906)

Radiation

Conduction

Convection

Important Radiation Laws & Concepts

Net radiation

Rn = incoming - outgoing $Rn = (1 - \alpha)I_s + E_L \sigma T^4(surface) - \sigma T^4(sky)$

α is *albedo*, which is the reflectivity of a surface

fresh snow has a high albedo (0.9)dark forest has a low albedo (0.05 - 0.15)light colored soils are in between (0.4 - 0.5)mean albedo for earth ≈ 0.36

$\beta = H / \lambda E$

 $\beta = 10 / 1 = 10$

 $\beta = 10 / 100 = 0.1$

The Greenhouse Effect

Some solar radiation is reflected by the Earth and the atmosphere Some of the infrared radiation passes through the atmosphere, and some is absorbed and re-emitted in all directions by greenhouse gas molecules. The effect of this is to warm the Earth's surface and the lower atmosphere.

Infrared radiation is emitted from the Earth's Surface

John Tyndall

Svante Arrhenius

Solar radiation passes through the clear atmosphere

Most radiation is absorbed by the Earth's surface and warms it

Pollution is the Primary Cause

The "Greenhouse gases" (e.g., carbon dioxide, methane, nitrous oxide, CFC's) trap heat in the earth's atmosphere.

Solar energy passes through

Radiant heat is trapped

Science understood since 1859 - John Tyndall

Greenhouse Gases

- ★ Water vapor (H₂O)
- ***** Carbon dioxide (CO₂)
- ***** Methane (CH_4)
- ***** Other Direct
 - Nitrous oxide (N_2O)
 - Fluorocarbons
- ***** Other Indirect
 - Carbon monoxide (CO)
 - Nitrogen oxides (NO_x)

- *****Most abundant and important GHG
- Keeps earth warm enough for liquid water to form
- Varies in concentration in the lower atmosphere from nearly 0% to 4%
- *Not considered important in anthropogenic climate change
 - Naturally correcting

Greenhouse Gases – CO₂

- * 2nd most important GHG
 - 0.038% (380 ppm)
- ***** Largest emission of GHG in US (82% of all GHGs)
 - Fossil fuel emission is only significant source of "non-natural" CO₂
- Projected to grow to to 0.06% (600 ppm) by 2050
- ***** Sinks:
 - Sedimentary rock "Lithification"
 - Very slow, not relevant to current climate change
 - Ocean
 - 52X as much C as atmosphere; 19X as much as soils + biosphere
 - Marine phytoplankton
 - Soils humus
 - Biosphere actively growing vegetation (esp. forests)
 - 30% of earth is land, 30% of land is forests (9% of earth)
 - Most important are tropical forests

Greenhouse Gases – CH₄

Until recently it was assumed to play a minor role

Concentration is 1.7 ppm (0.00017%)

10X more efficient than CO₂ as a GHG
Increased greatly since Industrial Revolution

Around 0.8 ppm for 160,000 years prior

X Net emissions of CH₄
Methane hydrates

Global Warming Art

Table Credit: Rohli & Vega Climatology, 2008

Global Trends in Major Greenhouse Gases to 1/2003

Global trends in major long-lived greenhouse gases through the year 2002. These five gases account for about 97% of the direct climate forcing by long-lived greenhouse gas increases since 1750. The remaining 3% is contributed by an assortment of 10 minor halogen gases, mainly HCFC-22, CFC-113 and CCI.

Image Credit: Robert A. Rohde, Global Warming Art

Annual Greenhouse Gas Emissions by Sector

Image Credit: Robert A. Rohde, Global Warming Art

Partition of Anthropogenic Carbon Emissions into Sinks

[2000-2006]

45% of all CO₂ emissions accumulated in the atmosphere

The Airborne Fraction

The fraction of the annual anthropogenic emissions that remains in the atmosphere

55% were removed by natural sinks

Canadell et al. 2007, PNAS

Human and Natural Drivers of Climate Change

PCC - WGI

Radiative Forcing Components

1.6 W m⁻² warms like 1.6 Xmas tree lights over every m² on Earth.

Carbon dioxide is causing the bulk of the forcing, and it lives a long time in our atmosphere so every year of emission means commitments to climate change for future generations.

©IPCC 2007: WG1-AR4

The Greenhouse Model

http://ccl.northwestern.edu/netlogo/models/ClimateChange

The Greenhouse Model is not a climate model; it is an energy balance model.