

Paleoclimatology

Anna Klene Department of Geography University of Montana

3 Objectives

Discuss climate archives
 Piecing the puzzle together

- Discuss key climate events using these different archives
 - Current understanding of atm evolution
- Review key time periods of interest to current warming

Time scales for Proxy Data

-						Orbita	al (III)		
Deg	lacial/	Histor	ical/in	strum	ental ((V)		_	
1 Byr		1 Myr Time span ol			1000 yrs Frecord			1 y	
10 ⁹	10 ⁸	10 ⁷	10 ⁶	10 ⁵	104	10 ³	10 ²	10	1
							Inst	rume	ntal
							His	torica	1
					-	<	Tre	e ring	s
						ce cor	es		
					Lake	sedin	nents	_	_
							Cora	roofe	_
							Cora	Treers	
		Oce	ean sec	diment	S				-
	~								
	Con	tinen	tal coa	etal co	dimer	ate			

Ruddiman, 2008

Archives of Climate Change:

Geological Biological: Fossils & Pollen Cryological: Ice Cores Historical Biological: Tree-Rings Instrumental Records

Proxy: Using one thing in place of another...
Always better if 2 different, independent proxies agree ^(C)

Archives of Climate Change:

Geological

Sediment structures & material (loess) Glacial moraines Lake sediments Coastal & Deep Ocean sediments

Archives:

Biological

Fossils or dead material Trees Critters (macro: mammals, beetles, etc. & micro: corals, plankton, forminifera, etc.)

Archives of Climate Change:

Cryological

Glaciers & Ice Caps

Ice Cores & Sediment Cores

- deuterium/hydrogen ratio:
 - 🛛 δD‰
 - Measure ratio of ${}^{2}H$ to ${}^{1}H...$
 - Deuterium is heavier than normal Hydrogen, so it takes more energy to evaporate any water molecule made with "heavy hydrogen".
 - The result is that the colder it gets, the less Deuterium ends up in precipitation.
 - The smaller the D/H ratio, the colder the climate.

From Skinner

Archives of Climate Change:

Historical Records

Letters, Diaries, Other Records

 Hunters in the Snow, 1565 Pieter Bruegel the Elder (Netherlandish, ca. 1525/30—1569)
 Oil on panel; 46 1/8 x 63 7/8 in. (117 x 162 cm)
 Image courtesy of the Kunsthistoriches Museum, Vienna

Archives of Climate Change:

Instrumental Records

Only within last ~200 years

Earth's Evolution

- ~4+ BYA: All blown away
- ~4: Magnetic field forms & atm held in place no O_2
- ~3.8: Out-gassing continues but liquid earth possible as planet cools below 100 C
- ~3.5 BYA: First life forms release O_2
- ~500 MYA: O₂ levels high enough for ozone layer & plants & animals can now colonize land

• All from geological evidence!!

Earth's Primordial Atmosphere

- 4+ billion years ago (Y.A.)
- Consisted of gases most abundant in solar system, hydrogen and helium (lightest elements)
- Mainly blown away

Stromatolites Dhotosynthesis CO₂ + H₂O + light → CH₂O + O₂ Cyanobacteria (Eubacteria) aka blue-green algae, appear ~ 3.5 bya Release O₂ as byproduct Accumulation of O₂ in the atmosphere didn't start until oceanic Fe₂+ was oxidized (~2 bya).

