

Core from the Permian red beds that underlie the High Plains aquifer in southwestern Kansas and the Oklahoma panhandle

Red Beds

- ~1.8 BYA once all iron in ocean reacted with O₂, it could build up in the atmosphere, leading to the oxidation of iron on exposed surface.
- This Fe₂O₃ is seen in geological formations called <u>Continental Red Beds</u>
- Only after the surface iron reacted could O₂ then build up in the atmosphere

Carachipampa Volcano and Red Beds, N.W. Argentina

500 MYA enough O₂ that O₃ layer began
That protects green plants to colonize land

• The release of O₂ by photosynthesis is probably the most significant effect of life on the geochemistry of the Earth.....until man!

Just 2% of all O₂ released over 3.8 BY is in atm.
Now, a balance between O₂ producers and users??

The last 500 MYA or so...

http://www.scotese.com/Default.htm

"Paratropical" = High Latitude Bauxites

Calcrete

Dropstone

Glendonite

• Early Eocene (55 million ya): +7 C warmer than now

http://www.scotese.com/Default.htm

"Paratropical" = High Latitude Bauxites

Oligocene

• Messinian Crisis (5-6 Mya): may be coldest, sea level well over 100 m lower than today

- Climate factors
 - ▲ Ice sheets
 - Thermal expansion (0.015% for each 1 C)

TABLE 6-1 Factors Contributing to Sea Level Fall in the Last 80 Million Years

Cause of sea level change	Estimated change (meters)
Decrease in ocean ridge	
volume	-200 to -300
Collision of India and Asia	-40
Decrease in volcanic	
plateau volume	-10 to -40
Water stored in ice sheets	-50
Thermal contraction of	
seawater	-7
All factors	-300 to -440

150,000

2.5

Slow drift in trend

First ice rafting 2.75 Myr ago

Chronology of Pleistocene Glaciations

North America	Alpine Region	Years before Present	
WISCONSINIAN Würm		-10,000 -75,000	
Sangamon	Riss-Würm	- 125 000	
ILLINOIAN	Riss	- 265,000	
Yarmouth Mindel-Riss			
KANSAN	Mindel	-435,000	
Aftonian	Günz-Mindel		
NEBRASKAN	Günz	Günz	
Pre-Nebraskan	Pre-Günz		

In North America, the glacial stages are Nebraskan, Kansan, Illinoian, and Wisconsinian. These terms correspond approximately to the Günz, Mindel, Riss, and Würm in Europe.

The Last 50,000 Years

• World sea level fell at least 100 m, thereby causing large expanses of the shallow continental shelves to emerge as dry land

•Disruption of major stream systems.

• The Missouri and Ohio rivers to move into new courses beyond the ice margin.

