

Design: Section thru Monitors

- Perimeter daylighting strategy: light shelves
- Building core daylighting strategy: north-facing clerestory monitors
- Solar panels on south-facing slope of monitor roofs

Design: Typical Wall Section

Climate Change: Science & Society Nov. 20, 2008

Light Shelf:

 reflects daylight onto ceiling plane on top

• Shades window on bottom for glare-free view

Site : Alternative Transportation

Bicycle Commuters

• Covered bike racks

• Showers

Climate Change: Science & Society Nov. 20, 2008

<u>Auto Commuters</u> • Designated parking for carpools • Hybrid vehicle for organization

Water : Efficiency Measures

Native Planting

- Drought resistant
- Uses drip irrigation system
- Water use reduced by more than 50%

Waterless Urinal

Name says it all

Microflush Composting Toilets

- 1 pint per flush
- Water trap prevents odors, vectors
- Saves 30,000 gallons per year

Energy : Efficient Mechanical Systems

Evaporative Cooling • 5x as efficient as refrigeration air conditioning

Ideal in Montana's dry climate

healthier: 100% outside air

Climate Change: Science & Society Nov. 20, 2008

Radiant Heating

approximately 20% more efficient
than air-based heating systems

• more comfortable—no drafts or heat stratification

Energy : Renewable Sources

Photovoltaic Panels

• 9.9 kW system generates 53% of total electricity use (32% of total energy cost-natural gas & electricity) **Solar Hot Water Panels**

• estimated to reduce total building energy usage 5-10% (not modeled)

Climate Change: Science & Society Nov. 20, 2008

26

Daylighting: from the Exterior

Typical Light Shelf

Climate Change: Science & Society Nov. 20, 2008

Daylighting: from the Interior

Office with daylight from Light Shelf

Gallery with daylight from Clerestory Monitor

Green Building: shifting rather than increasing upfront costs

Conventional Approach	n (Estimates*)	Green Buildin	ng Approach (HOTR Actual)
Property	\$ 182,500	\$ 182,500	Property
Professional Services (10%)	\$ 134,790	\$ 122,000	Professional Services
Demolition	\$ 70,500	\$ 15,000	Deconstruction (partial)
New Construction	\$ 1,156,700	\$ 839,200	Renovation
		\$ 66,200	Alternative Energy Systems
Site	\$ 191,200	\$ 165,700	Site Improvements
-		\$ 12,800	LEED-related costs & fees
OTAL CAPITAL COSTS	\$1,735,690	\$1,403,400	TOTAL CAPITAL COSTS

Capital + Operating Costs*					
	Baseline meeting Model E	Office Building inergy Code**	Home on the Range		
	TOTAL CAPITAL COSTS	\$1,735,190	\$1,403,400		
	\$331,790 capital savings				
Capital +	10 years of Operation Costs	\$1,863,183	\$1,429,813		
	\$331,790 capital savings +	\$ 101,580 oper a	ational savings = \$433,370		
Capital +	20 years of Operation Costs	\$2,051,903	\$1,468,912 ational savings = \$582,991		
Capital +	30 years of Operation Costs	\$2,331,256	\$1,526,787		
	\$331,790 capital savings +	\$472,679 opera	ational savings = \$804,469		
* All figures	assume annual 4% energy escalation rate				
**ASHRAE	90.1-1999 modeled using eQuest energy so	ftware			
Climate Change: Nov. 24	Science & Society 0, 2008		HIGH PLAINS		

Home on the Range: LEED by the numbers

Climate Change: Science & Societ

Sustainable Site

- Provides alternative transportation amenities for bicyclists, carpoolers, & a hybrid vehicle
- 100% of stormwater treated on-site
- Minimizes urban heat island effect

Water Efficiency

- 50% less irrigation water for landscaping
- 90% less wastewater
- 60% less potable water

Energy & Atmosphere

- 79% less energy used (by value)
- 52% of electricity generated on-site
- 100% of remaining electricity from wind sources for one year

Home on the Range: LEED by the numbers

Climate Change: Science & Society Nov. 20, 2008

Materials & Resources

- 95% of existing building reused
- $\bullet\,$ 92% of construction & demolition waste diverted from landfill (by weight)
- 16% of materials were salvaged (by value)
- 10% of materials have recycled content (by value)
- 23% of materials from sources within 500 miles (by value)
- 60% of wood from FSC certified forests

Indoor Environmental Quality

- 100% outside air used to cool building
- · 100% of materials contain no urea formaldehyde
- $\bullet\,$ 100% of regularly occupied rooms have high levels of daylight and views outside

Klos Building Remodel

Klos Building Remodel

Klos Building Remodel

Cooling Mode C:

- Evaporative cooling
- Keep ceiling fans on, windows closed
- Rooftop unit dumps cool air in front, and exhaust fans pull it out at rear of office

Crawlspace with collection tanks, booster pump, particulate and UV filters. Sediment catcher in foreground.

Climate Change: Science & Society

Klos Building Remodel

Climate Change: Science & Society Nov. 20, 2008 Currently compiling LEED documentation.

Gold or Platinum certification is anticipated.

HIGH PLAINS

Klos Building Remodel: LEED by the numbers

Climate Change: Science & Society

Sustainable Site

- Provides alternative transportation amenities for bicyclists, carpoolers, & a hybrid vehicle
- 100% of stormwater used on-site
- · Development density & community connectivity

Water Efficiency

• 100% of water from rainwater

Energy & Atmosphere

- 66% less energy used than code (by value)
- 28% of electricity generated on-site
- 100% of remaining electricity from wind sources for one year

Klos Building Remodel: LEED by the numbers

Climate Change: Science & Society Nov. 20, 2008

Materials & Resources

- 95% of existing building reused
- 66% of construction & demolition waste diverted from landfill (by weight)
- · 21% of materials were salvaged (by value)
- 11% of materials have recycled content (by value)
- 36% of materials from sources within 500 miles (by value)
- 6% of materials from rapidly renewable sources (by value)

Indoor Environmental Quality

- 100% outside air used to cool building
- · 100% of materials contain no urea formaldehyde
- 100% of regularly occupied rooms have high levels of daylight and views outside

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><image><image>

Swift Building Lofts

Existing first floor

Climate Change: Science & Society Nov. 20, 2008

Green Building Measures

- 1. Superinsulate roof and walls
- 2. Low-E glazing in windows
- 3. Radiant floor heating
- 4. Radiant floor cooling
- 5. Dual flush toilets, 1.6 gpm showerheads
- 6. Rainwater collection
- 7. Solar hot water panels (120 SF of collector area)
- 8. Photovoltaic panels (4 kW array)
- 9. Extensive salvaged doors, trim
- 10.FSC certified wood interior framing

Swift Building Lofts

Climate Change: Science & Society

33% reduction in Potable Water compared to code baseline

- 23% reduction due to fixture <u>efficiency</u>
- 10% reduction due to using rainwater and well water for toilet flushing

Costs & Benefits of Green Building

Cost Shifting	 Applying Integrated Design Process & End Use / Least Cost Planning
	• No higher upfront cost
Life Cycle	 Using higher quality, more durable materials and higher efficiency mechanical equipment
	 Higher upfront cost, but also higher value (ie. lower cost per year of product lifetime or total efficiency savings over life exceeds incremental upfront cost
	 These types of investments may have much higher returns than stock market with lower risk
Climate Change: Science & Society	

Costs & Benefits of Green Building

Reduced Risks	 Improving Indoor Environmental Quality with non- toxic, healthier materials and better ventilation
	 Perhaps minor higher upfront costs, which are offset by reduced liability for sick building syndrome or employee sick time
Productivity	 Improving Indoor Environmental Quality with daylighting and views
	 Potentially higher upfront costs, but savings through improved employee productivity or resident comfort are calculated to exceed all other financial benefits (reduced utilities, O&M, etc.) by more than 2x (Greg Kats, Capital E, 2003)
Climate Change: Science & Society Nov. 20, 2008	HIGH PLAINS

Costs & Benefits of Green Building

Internalizing Externalities

- Benefits are not directly realized by owner
- Big Picture, influenced by public policy
- Benefits to society include:
 - 1. Avoided environmental remediation costs (mine reclamation, Superfund toxic cleanups, loss of wildlife due to pollution)
 - 2. Avoided medical expenses (asthma, cancer, etc.)

Costs & Benefits of Green Building

Internalizing Externalities

- Benefits to society, continued:
 - 3. Avoided global climate change costs (levees, forest fires, drought relief, flood insurance, etc.)
 - 4. Avoided political and financial costs of securing foreign energy sources (eg. War in Iraq)

Climate Change: Science & Society Nov. 20, 2008

HIGH PLAINS

Energy & Water Relationship

- Electricity use in California:
 - California consumes about 250 Billion kWh/yr
 - Up to 50 Billion kWh/yr is related to water
- Thus, water-related energy use is about 20% of total electric consumption in California

Source: Southern California Edison

Energy & Water Relationship

How is Energy Used with Water?

- **1.** Increase Water Quality
- 2. Increase Elevation or Pressure (potential energy)
- 3. Increase Water **Temperature**

Climate Change: Science & Society

Energy for Water Treatment

Water treated by U.S. public water systems each day: 43 billion gallons Source: US EPA

Electricity to treat public water & sewage each day: 153,425 kilowatt-hours (kWh) Source: US EPA

Thus, 3.56 watt-hours (Wh) are required for each gallon of water

3.5 gallons / flush

1.2 gallons / flush

HIGH PLAINS

45 sec.

Energy for Water Treatment

Strategies for reducing water treatment energy:

- **1.** Use less water through efficiency & conservation
- 2. Match water quality to end use

Climate Change: Science & Society

HIGH PLAINS

Energy for Pumping

The greater the elevation difference, the more pump energy required

- Municipal
- Well

Strategies for reducing pumping water:

- **1.** Use less water through efficiency & conservation
- 2. Use rainwater & greywater

Energy for Water Heating

Strategies for reducing water heating energy:

- **1**. Use less hot water through efficiency & conservation
- 2. Use high efficiency water heaters and boilers (+90%)
- 3. Solar hot water panels

